Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcun Unicode version

Theorem bdcun 16225
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1  |- BOUNDED  A
bdcdif.2  |- BOUNDED  B
Assertion
Ref Expression
bdcun  |- BOUNDED  ( A  u.  B
)

Proof of Theorem bdcun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5  |- BOUNDED  A
21bdeli 16209 . . . 4  |- BOUNDED  x  e.  A
3 bdcdif.2 . . . . 5  |- BOUNDED  B
43bdeli 16209 . . . 4  |- BOUNDED  x  e.  B
52, 4ax-bdor 16179 . . 3  |- BOUNDED  ( x  e.  A  \/  x  e.  B
)
65bdcab 16212 . 2  |- BOUNDED  { x  |  ( x  e.  A  \/  x  e.  B ) }
7 df-un 3201 . 2  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
86, 7bdceqir 16207 1  |- BOUNDED  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 713    e. wcel 2200   {cab 2215    u. cun 3195  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16176  ax-bdor 16179  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-un 3201  df-bdc 16204
This theorem is referenced by:  bdcpr  16234  bdctp  16235  bdcsuc  16243
  Copyright terms: Public domain W3C validator