Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcun Unicode version

Theorem bdcun 15835
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1  |- BOUNDED  A
bdcdif.2  |- BOUNDED  B
Assertion
Ref Expression
bdcun  |- BOUNDED  ( A  u.  B
)

Proof of Theorem bdcun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5  |- BOUNDED  A
21bdeli 15819 . . . 4  |- BOUNDED  x  e.  A
3 bdcdif.2 . . . . 5  |- BOUNDED  B
43bdeli 15819 . . . 4  |- BOUNDED  x  e.  B
52, 4ax-bdor 15789 . . 3  |- BOUNDED  ( x  e.  A  \/  x  e.  B
)
65bdcab 15822 . 2  |- BOUNDED  { x  |  ( x  e.  A  \/  x  e.  B ) }
7 df-un 3170 . 2  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
86, 7bdceqir 15817 1  |- BOUNDED  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 710    e. wcel 2176   {cab 2191    u. cun 3164  BOUNDED wbdc 15813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187  ax-bd0 15786  ax-bdor 15789  ax-bdsb 15795
This theorem depends on definitions:  df-bi 117  df-clab 2192  df-cleq 2198  df-clel 2201  df-un 3170  df-bdc 15814
This theorem is referenced by:  bdcpr  15844  bdctp  15845  bdcsuc  15853
  Copyright terms: Public domain W3C validator