| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcun | Unicode version | ||
| Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcdif.1 |
|
| bdcdif.2 |
|
| Ref | Expression |
|---|---|
| bdcun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcdif.1 |
. . . . 5
| |
| 2 | 1 | bdeli 15576 |
. . . 4
|
| 3 | bdcdif.2 |
. . . . 5
| |
| 4 | 3 | bdeli 15576 |
. . . 4
|
| 5 | 2, 4 | ax-bdor 15546 |
. . 3
|
| 6 | 5 | bdcab 15579 |
. 2
|
| 7 | df-un 3161 |
. 2
| |
| 8 | 6, 7 | bdceqir 15574 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15543 ax-bdor 15546 ax-bdsb 15552 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-un 3161 df-bdc 15571 |
| This theorem is referenced by: bdcpr 15601 bdctp 15602 bdcsuc 15610 |
| Copyright terms: Public domain | W3C validator |