Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcun Unicode version

Theorem bdcun 15508
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1  |- BOUNDED  A
bdcdif.2  |- BOUNDED  B
Assertion
Ref Expression
bdcun  |- BOUNDED  ( A  u.  B
)

Proof of Theorem bdcun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5  |- BOUNDED  A
21bdeli 15492 . . . 4  |- BOUNDED  x  e.  A
3 bdcdif.2 . . . . 5  |- BOUNDED  B
43bdeli 15492 . . . 4  |- BOUNDED  x  e.  B
52, 4ax-bdor 15462 . . 3  |- BOUNDED  ( x  e.  A  \/  x  e.  B
)
65bdcab 15495 . 2  |- BOUNDED  { x  |  ( x  e.  A  \/  x  e.  B ) }
7 df-un 3161 . 2  |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
86, 7bdceqir 15490 1  |- BOUNDED  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 709    e. wcel 2167   {cab 2182    u. cun 3155  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15459  ax-bdor 15462  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-un 3161  df-bdc 15487
This theorem is referenced by:  bdcpr  15517  bdctp  15518  bdcsuc  15526
  Copyright terms: Public domain W3C validator