ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinuniss Unicode version

Theorem iinuniss 4010
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iinuniss  |-  ( A  u.  |^| B )  C_  |^|_
x  e.  B  ( A  u.  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem iinuniss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.32vr 2654 . . . 4  |-  ( ( y  e.  A  \/  A. x  e.  B  y  e.  x )  ->  A. x  e.  B  ( y  e.  A  \/  y  e.  x
) )
2 vex 2775 . . . . . 6  |-  y  e. 
_V
32elint2 3892 . . . . 5  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
43orbi2i 764 . . . 4  |-  ( ( y  e.  A  \/  y  e.  |^| B )  <-> 
( y  e.  A  \/  A. x  e.  B  y  e.  x )
)
5 elun 3314 . . . . 5  |-  ( y  e.  ( A  u.  x )  <->  ( y  e.  A  \/  y  e.  x ) )
65ralbii 2512 . . . 4  |-  ( A. x  e.  B  y  e.  ( A  u.  x
)  <->  A. x  e.  B  ( y  e.  A  \/  y  e.  x
) )
71, 4, 63imtr4i 201 . . 3  |-  ( ( y  e.  A  \/  y  e.  |^| B )  ->  A. x  e.  B  y  e.  ( A  u.  x ) )
87ss2abi 3265 . 2  |-  { y  |  ( y  e.  A  \/  y  e. 
|^| B ) } 
C_  { y  | 
A. x  e.  B  y  e.  ( A  u.  x ) }
9 df-un 3170 . 2  |-  ( A  u.  |^| B )  =  { y  |  ( y  e.  A  \/  y  e.  |^| B ) }
10 df-iin 3930 . 2  |-  |^|_ x  e.  B  ( A  u.  x )  =  {
y  |  A. x  e.  B  y  e.  ( A  u.  x
) }
118, 9, 103sstr4i 3234 1  |-  ( A  u.  |^| B )  C_  |^|_
x  e.  B  ( A  u.  x )
Colors of variables: wff set class
Syntax hints:    \/ wo 710    e. wcel 2176   {cab 2191   A.wral 2484    u. cun 3164    C_ wss 3166   |^|cint 3885   |^|_ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-int 3886  df-iin 3930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator