ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unjust Unicode version

Theorem unjust 3169
Description: Soundness justification theorem for df-un 3170. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
unjust  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
Distinct variable groups:    x, A    x, B    y, A    y, B

Proof of Theorem unjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1 2268 . . . 4  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2 eleq1 2268 . . . 4  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
31, 2orbi12d 795 . . 3  |-  ( x  =  z  ->  (
( x  e.  A  \/  x  e.  B
)  <->  ( z  e.  A  \/  z  e.  B ) ) )
43cbvabv 2330 . 2  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { z  |  ( z  e.  A  \/  z  e.  B ) }
5 eleq1 2268 . . . 4  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
6 eleq1 2268 . . . 4  |-  ( z  =  y  ->  (
z  e.  B  <->  y  e.  B ) )
75, 6orbi12d 795 . . 3  |-  ( z  =  y  ->  (
( z  e.  A  \/  z  e.  B
)  <->  ( y  e.  A  \/  y  e.  B ) ) )
87cbvabv 2330 . 2  |-  { z  |  ( z  e.  A  \/  z  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
94, 8eqtri 2226 1  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2176   {cab 2191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator