ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unjust Unicode version

Theorem unjust 3124
Description: Soundness justification theorem for df-un 3125. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
unjust  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
Distinct variable groups:    x, A    x, B    y, A    y, B

Proof of Theorem unjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . . . 4  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2 eleq1 2233 . . . 4  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
31, 2orbi12d 788 . . 3  |-  ( x  =  z  ->  (
( x  e.  A  \/  x  e.  B
)  <->  ( z  e.  A  \/  z  e.  B ) ) )
43cbvabv 2295 . 2  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { z  |  ( z  e.  A  \/  z  e.  B ) }
5 eleq1 2233 . . . 4  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
6 eleq1 2233 . . . 4  |-  ( z  =  y  ->  (
z  e.  B  <->  y  e.  B ) )
75, 6orbi12d 788 . . 3  |-  ( z  =  y  ->  (
( z  e.  A  \/  z  e.  B
)  <->  ( y  e.  A  \/  y  e.  B ) ) )
87cbvabv 2295 . 2  |-  { z  |  ( z  e.  A  \/  z  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
94, 8eqtri 2191 1  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 703    = wceq 1348    e. wcel 2141   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator