ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drex2 Unicode version

Theorem drex2 1725
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
drex2.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
drex2  |-  ( A. x  x  =  y  ->  ( E. z ph  <->  E. z ps ) )

Proof of Theorem drex2
StepHypRef Expression
1 hbae 1711 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
2 drex2.1 . 2  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
31, 2exbidh 1607 1  |-  ( A. x  x  =  y  ->  ( E. z ph  <->  E. z ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrfor  1793
  Copyright terms: Public domain W3C validator