ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drex2 GIF version

Theorem drex2 1746
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
drex2.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drex2 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))

Proof of Theorem drex2
StepHypRef Expression
1 hbae 1732 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 drex2.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2exbidh 1628 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exdistrfor  1814
  Copyright terms: Public domain W3C validator