| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exdistrfor | Unicode version | ||
| Description: Distribution of
existential quantifiers, with a bound-variable
hypothesis saying that |
| Ref | Expression |
|---|---|
| exdistrfor.1 |
|
| Ref | Expression |
|---|---|
| exdistrfor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrfor.1 |
. 2
| |
| 2 | biidd 172 |
. . . . . 6
| |
| 3 | 2 | drex1 1812 |
. . . . 5
|
| 4 | 3 | drex2 1746 |
. . . 4
|
| 5 | hbe1 1509 |
. . . . . 6
| |
| 6 | 5 | 19.9h 1657 |
. . . . 5
|
| 7 | 19.8a 1604 |
. . . . . . 7
| |
| 8 | 7 | anim2i 342 |
. . . . . 6
|
| 9 | 8 | eximi 1614 |
. . . . 5
|
| 10 | 6, 9 | sylbi 121 |
. . . 4
|
| 11 | 4, 10 | biimtrrdi 164 |
. . 3
|
| 12 | ax-ial 1548 |
. . . 4
| |
| 13 | 19.40 1645 |
. . . . . 6
| |
| 14 | 19.9t 1656 |
. . . . . . . 8
| |
| 15 | 14 | biimpd 144 |
. . . . . . 7
|
| 16 | 15 | anim1d 336 |
. . . . . 6
|
| 17 | 13, 16 | syl5 32 |
. . . . 5
|
| 18 | 17 | sps 1551 |
. . . 4
|
| 19 | 12, 18 | eximdh 1625 |
. . 3
|
| 20 | 11, 19 | jaoi 717 |
. 2
|
| 21 | 1, 20 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: oprabidlem 5956 |
| Copyright terms: Public domain | W3C validator |