Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exdistrfor | Unicode version |
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that is not free in , but can be free in (and there is no distinct variable condition on and ). (Contributed by Jim Kingdon, 25-Feb-2018.) |
Ref | Expression |
---|---|
exdistrfor.1 |
Ref | Expression |
---|---|
exdistrfor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistrfor.1 | . 2 | |
2 | biidd 171 | . . . . . 6 | |
3 | 2 | drex1 1791 | . . . . 5 |
4 | 3 | drex2 1725 | . . . 4 |
5 | hbe1 1488 | . . . . . 6 | |
6 | 5 | 19.9h 1636 | . . . . 5 |
7 | 19.8a 1583 | . . . . . . 7 | |
8 | 7 | anim2i 340 | . . . . . 6 |
9 | 8 | eximi 1593 | . . . . 5 |
10 | 6, 9 | sylbi 120 | . . . 4 |
11 | 4, 10 | syl6bir 163 | . . 3 |
12 | ax-ial 1527 | . . . 4 | |
13 | 19.40 1624 | . . . . . 6 | |
14 | 19.9t 1635 | . . . . . . . 8 | |
15 | 14 | biimpd 143 | . . . . . . 7 |
16 | 15 | anim1d 334 | . . . . . 6 |
17 | 13, 16 | syl5 32 | . . . . 5 |
18 | 17 | sps 1530 | . . . 4 |
19 | 12, 18 | eximdh 1604 | . . 3 |
20 | 11, 19 | jaoi 711 | . 2 |
21 | 1, 20 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wal 1346 wnf 1453 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: oprabidlem 5884 |
Copyright terms: Public domain | W3C validator |