| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ | Unicode version | ||
| Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequi 1862 |
. 2
| |
| 2 | sbequi 1862 |
. . 3
| |
| 3 | 2 | equcoms 1731 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: drsb2 1864 sbco2vlem 1972 sbco2v 1976 sbco2yz 1991 sbcocom 1998 sb10f 2023 hbsb4 2040 nfsb4or 2049 sb8eu 2067 sb8euh 2077 cbvab 2329 cbvralf 2730 cbvrexf 2731 cbvreu 2736 cbvralsv 2754 cbvrexsv 2755 cbvrab 2770 cbvreucsf 3158 cbvrabcsf 3159 sbss 3568 disjiun 4039 cbvopab1 4117 cbvmpt 4139 tfis 4631 findes 4651 cbviota 5237 sb8iota 5239 cbvriota 5910 uzind4s 9711 bezoutlemmain 12319 cbvrald 15728 setindft 15905 |
| Copyright terms: Public domain | W3C validator |