| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ | Unicode version | ||
| Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequi 1863 |
. 2
| |
| 2 | sbequi 1863 |
. . 3
| |
| 3 | 2 | equcoms 1732 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: drsb2 1865 sbco2vlem 1973 sbco2v 1977 sbco2yz 1992 sbcocom 1999 sb10f 2024 hbsb4 2041 nfsb4or 2050 sb8eu 2068 sb8euh 2078 cbvab 2331 cbvralf 2733 cbvrexf 2734 cbvreu 2740 cbvralsv 2758 cbvrexsv 2759 cbvrab 2774 cbvreucsf 3166 cbvrabcsf 3167 sbss 3576 disjiun 4054 cbvopab1 4133 cbvmpt 4155 tfis 4649 findes 4669 cbviota 5256 sb8iota 5258 cbvriota 5933 uzind4s 9746 bezoutlemmain 12434 cbvrald 15924 setindft 16100 |
| Copyright terms: Public domain | W3C validator |