| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ | Unicode version | ||
| Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequi 1862 |
. 2
| |
| 2 | sbequi 1862 |
. . 3
| |
| 3 | 2 | equcoms 1731 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: drsb2 1864 sbco2vlem 1972 sbco2v 1976 sbco2yz 1991 sbcocom 1998 sb10f 2023 hbsb4 2040 nfsb4or 2049 sb8eu 2067 sb8euh 2077 cbvab 2329 cbvralf 2730 cbvrexf 2731 cbvreu 2736 cbvralsv 2754 cbvrexsv 2755 cbvrab 2770 cbvreucsf 3158 cbvrabcsf 3159 sbss 3568 disjiun 4040 cbvopab1 4118 cbvmpt 4140 tfis 4632 findes 4652 cbviota 5238 sb8iota 5240 cbvriota 5912 uzind4s 9713 bezoutlemmain 12352 cbvrald 15761 setindft 15938 |
| Copyright terms: Public domain | W3C validator |