ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2v Unicode version

Theorem el2v 2805
Description: If a proposition is implied by  x  e.  _V and  y  e.  _V (which is true, see vex 2802), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
el2v.1  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ph )
Assertion
Ref Expression
el2v  |-  ph

Proof of Theorem el2v
StepHypRef Expression
1 vex 2802 . 2  |-  x  e. 
_V
2 vex 2802 . 2  |-  y  e. 
_V
3 el2v.1 . 2  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ph )
41, 2, 3mp2an 426 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  en2prde  7362
  Copyright terms: Public domain W3C validator