ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el2v GIF version

Theorem el2v 2779
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 2776), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
Hypothesis
Ref Expression
el2v.1 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑)
Assertion
Ref Expression
el2v 𝜑

Proof of Theorem el2v
StepHypRef Expression
1 vex 2776 . 2 𝑥 ∈ V
2 vex 2776 . 2 𝑦 ∈ V
3 el2v.1 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑)
41, 2, 3mp2an 426 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator