Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvd Unicode version

Theorem elvd 2717
 Description: Technical lemma used to shorten proofs. If a proposition is implied by (which is true, see vex 2715) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
Hypothesis
Ref Expression
elvd.1
Assertion
Ref Expression
elvd

Proof of Theorem elvd
StepHypRef Expression
1 vex 2715 . 2
2 elvd.1 . 2
31, 2mpan2 422 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wcel 2128  cvv 2712 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-v 2714 This theorem is referenced by:  omp1eomlem  7028  imasnopn  12659  pw1nct  13536
 Copyright terms: Public domain W3C validator