ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvd Unicode version

Theorem elvd 2765
Description: Technical lemma used to shorten proofs. If a proposition is implied by  x  e.  _V (which is true, see vex 2763) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
Hypothesis
Ref Expression
elvd.1  |-  ( (
ph  /\  x  e.  _V )  ->  ps )
Assertion
Ref Expression
elvd  |-  ( ph  ->  ps )

Proof of Theorem elvd
StepHypRef Expression
1 vex 2763 . 2  |-  x  e. 
_V
2 elvd.1 . 2  |-  ( (
ph  /\  x  e.  _V )  ->  ps )
31, 2mpan2 425 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  omp1eomlem  7153  subrgpropd  13749  imasnopn  14467  pw1nct  15493
  Copyright terms: Public domain W3C validator