Theorem List for Intuitionistic Logic Explorer - 2801-2900   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | ceqsex 2801* | 
Elimination of an existential quantifier, using implicit substitution.
       (Contributed by NM, 2-Mar-1995.)  (Revised by Mario Carneiro,
       10-Oct-2016.)
 | 
                                    
                                      | 
|   | 
| Theorem | ceqsexv 2802* | 
Elimination of an existential quantifier, using implicit substitution.
       (Contributed by NM, 2-Mar-1995.)
 | 
                    
                           
               | 
|   | 
| Theorem | ceqsexv2d 2803* | 
Elimination of an existential quantifier, using implicit substitution.
       (Contributed by Thierry Arnoux, 10-Sep-2016.)  Shorten, reduce dv
       conditions.  (Revised by Wolf Lammen, 5-Jun-2025.)  (Proof shortened by
       SN, 5-Jun-2025.)
 | 
                    
                                    | 
|   | 
| Theorem | ceqsex2 2804* | 
Elimination of two existential quantifiers, using implicit substitution.
       (Contributed by Scott Fenton, 7-Jun-2006.)
 | 
                                                              
                          
                                                | 
|   | 
| Theorem | ceqsex2v 2805* | 
Elimination of two existential quantifiers, using implicit substitution.
       (Contributed by Scott Fenton, 7-Jun-2006.)
 | 
                                      
                          
                                                | 
|   | 
| Theorem | ceqsex3v 2806* | 
Elimination of three existential quantifiers, using implicit
       substitution.  (Contributed by NM, 16-Aug-2011.)
 | 
                                                
                                                                                            
        
                | 
|   | 
| Theorem | ceqsex4v 2807* | 
Elimination of four existential quantifiers, using implicit
       substitution.  (Contributed by NM, 23-Sep-2011.)
 | 
                                                                  
                          
                          
                          
                                                          
              | 
|   | 
| Theorem | ceqsex6v 2808* | 
Elimination of six existential quantifiers, using implicit substitution.
       (Contributed by NM, 21-Sep-2011.)
 | 
                                                                                              
                          
                          
                          
                          
                          
                                          
        
                                          | 
|   | 
| Theorem | ceqsex8v 2809* | 
Elimination of eight existential quantifiers, using implicit
       substitution.  (Contributed by NM, 23-Sep-2011.)
 | 
                                                                                                                          
                          
                          
                          
                          
                          
                          
                          
                                               
                                                          
      
         | 
|   | 
| Theorem | gencbvex 2810* | 
Change of bound variable using implicit substitution.  (Contributed by
       NM, 17-May-1996.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                    
                          
                                                                          | 
|   | 
| Theorem | gencbvex2 2811* | 
Restatement of gencbvex 2810 with weaker hypotheses.  (Contributed by Jeff
       Hankins, 6-Dec-2006.)
 | 
                    
                          
                                                                          | 
|   | 
| Theorem | gencbval 2812* | 
Change of bound variable using implicit substitution.  (Contributed by
       NM, 17-May-1996.)  (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
 | 
                    
                          
                                                         
                 | 
|   | 
| Theorem | sbhypf 2813* | 
Introduce an explicit substitution into an implicit substitution
       hypothesis.  See also csbhypf .  (Contributed by Raph Levien,
       10-Apr-2004.)
 | 
                  
                              
      
  ![]  ]](rbrack.gif)         | 
|   | 
| Theorem | vtoclgft 2814 | 
Closed theorem form of vtoclgf 2822.  (Contributed by NM, 17-Feb-2013.)
       (Revised by Mario Carneiro, 12-Oct-2016.)
 | 
        
       
              
         
                
      | 
|   | 
| Theorem | vtocldf 2815 | 
Implicit substitution of a class for a setvar variable.  (Contributed
         by Mario Carneiro, 15-Oct-2016.)
 | 
                                                                                                        
                      | 
|   | 
| Theorem | vtocld 2816* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       Mario Carneiro, 15-Oct-2016.)
 | 
                                                                              | 
|   | 
| Theorem | vtoclf 2817* | 
Implicit substitution of a class for a setvar variable.  This is a
       generalization of chvar 1771.  (Contributed by NM, 30-Aug-1993.)
 | 
                                    
                              | 
|   | 
| Theorem | vtocl 2818* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 30-Aug-1993.)
 | 
                    
                                  | 
|   | 
| Theorem | vtocl2 2819* | 
Implicit substitution of classes for setvar variables.  (Contributed by
       NM, 26-Jul-1995.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                                                              | 
|   | 
| Theorem | vtocl3 2820* | 
Implicit substitution of classes for setvar variables.  (Contributed by
       NM, 3-Jun-1995.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                                       
        
                                     | 
|   | 
| Theorem | vtoclb 2821* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 23-Dec-1993.)
 | 
                    
                          
                                              | 
|   | 
| Theorem | vtoclgf 2822 | 
Implicit substitution of a class for a setvar variable, with
       bound-variable hypotheses in place of distinct variable restrictions.
       (Contributed by NM, 21-Sep-2003.)  (Proof shortened by Mario Carneiro,
       10-Oct-2016.)
 | 
                              
                                            | 
|   | 
| Theorem | vtoclg1f 2823* | 
Version of vtoclgf 2822 with one nonfreeness hypothesis replaced with
a
       disjoint variable condition, thus avoiding dependency on ax-11 1520 and
       ax-13 2169.  (Contributed by BJ, 1-May-2019.)
 | 
                  
                                            | 
|   | 
| Theorem | vtoclg 2824* | 
Implicit substitution of a class expression for a setvar variable.
       (Contributed by NM, 17-Apr-1995.)
 | 
                                                  | 
|   | 
| Theorem | vtoclbg 2825* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 29-Apr-1994.)
 | 
                                
                                                        | 
|   | 
| Theorem | vtocl2gf 2826 | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 25-Apr-1995.)
 | 
                                                                      
                          
                                                  | 
|   | 
| Theorem | vtocl3gf 2827 | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 10-Aug-2013.)  (Revised by Mario Carneiro, 10-Oct-2016.)
 | 
                                                                                                                  
                                                                                                                  | 
|   | 
| Theorem | vtocl2g 2828* | 
Implicit substitution of 2 classes for 2 setvar variables.  (Contributed
       by NM, 25-Apr-1995.)
 | 
                                                                                      | 
|   | 
| Theorem | vtoclgaf 2829* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 17-Feb-2006.)  (Revised by Mario Carneiro, 10-Oct-2016.)
 | 
                              
                          
                            | 
|   | 
| Theorem | vtoclga 2830* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 20-Aug-1995.)
 | 
                                
                            | 
|   | 
| Theorem | vtocl2gaf 2831* | 
Implicit substitution of 2 classes for 2 setvar variables.  (Contributed
       by NM, 10-Aug-2013.)
 | 
                                                                      
                          
                                                                      | 
|   | 
| Theorem | vtocl2ga 2832* | 
Implicit substitution of 2 classes for 2 setvar variables.  (Contributed
       by NM, 20-Aug-1995.)
 | 
                                                                 
                                         | 
|   | 
| Theorem | vtocl3gaf 2833* | 
Implicit substitution of 3 classes for 3 setvar variables.  (Contributed
       by NM, 10-Aug-2013.)  (Revised by Mario Carneiro, 11-Oct-2016.)
 | 
                                                                                                                  
                                                                                     
        
                                                 | 
|   | 
| Theorem | vtocl3ga 2834* | 
Implicit substitution of 3 classes for 3 setvar variables.  (Contributed
       by NM, 20-Aug-1995.)
 | 
                                                                                           
        
                                                 | 
|   | 
| Theorem | vtocleg 2835* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 10-Jan-2004.)
 | 
                                  | 
|   | 
| Theorem | vtoclegft 2836* | 
Implicit substitution of a class for a setvar variable.  (Closed theorem
       version of vtoclef 2837.)  (Contributed by NM, 7-Nov-2005.)  (Revised
by
       Mario Carneiro, 11-Oct-2016.)
 | 
                                  
    | 
|   | 
| Theorem | vtoclef 2837* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 18-Aug-1993.)
 | 
                                
                  | 
|   | 
| Theorem | vtocle 2838* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 9-Sep-1993.)
 | 
                    
                  | 
|   | 
| Theorem | vtoclri 2839* | 
Implicit substitution of a class for a setvar variable.  (Contributed by
       NM, 21-Nov-1994.)
 | 
                                                         | 
|   | 
| Theorem | spcimgft 2840 | 
A closed version of spcimgf 2844.  (Contributed by Mario Carneiro,
       4-Jan-2017.)
 | 
                                                   
                   | 
|   | 
| Theorem | spcgft 2841 | 
A closed version of spcgf 2846.  (Contributed by Andrew Salmon,
       6-Jun-2011.)  (Revised by Mario Carneiro, 4-Jan-2017.)
 | 
                                                   
                   | 
|   | 
| Theorem | spcimegft 2842 | 
A closed version of spcimegf 2845.  (Contributed by Mario Carneiro,
       4-Jan-2017.)
 | 
                                          
                            | 
|   | 
| Theorem | spcegft 2843 | 
A closed version of spcegf 2847.  (Contributed by Jim Kingdon,
       22-Jun-2018.)
 | 
                                                   
                   | 
|   | 
| Theorem | spcimgf 2844 | 
Rule of specialization, using implicit substitution.  Compare Theorem
         7.3 of [Quine] p. 44.  (Contributed by
Mario Carneiro, 4-Jan-2017.)
 | 
                              
                                          | 
|   | 
| Theorem | spcimegf 2845 | 
Existential specialization, using implicit substitution.  (Contributed
       by Mario Carneiro, 4-Jan-2017.)
 | 
                              
         
               
                  | 
|   | 
| Theorem | spcgf 2846 | 
Rule of specialization, using implicit substitution.  Compare Theorem
       7.3 of [Quine] p. 44.  (Contributed by NM,
2-Feb-1997.)  (Revised by
       Andrew Salmon, 12-Aug-2011.)
 | 
                              
                                          | 
|   | 
| Theorem | spcegf 2847 | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 2-Feb-1997.)
 | 
                              
                                          | 
|   | 
| Theorem | spcimdv 2848* | 
Restricted specialization, using implicit substitution.  (Contributed
         by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcdv 2849* | 
Rule of specialization, using implicit substitution.  Analogous to
         rspcdv 2871.  (Contributed by David Moews, 1-May-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcimedv 2850* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                      | 
|   | 
| Theorem | spcgv 2851* | 
Rule of specialization, using implicit substitution.  Compare Theorem
       7.3 of [Quine] p. 44.  (Contributed by NM,
22-Jun-1994.)
 | 
                                                | 
|   | 
| Theorem | spcegv 2852* | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 14-Aug-1994.)
 | 
                                                | 
|   | 
| Theorem | spcedv 2853* | 
Existential specialization, using implicit substitution, deduction
       version.  (Contributed by RP, 12-Aug-2020.)
 | 
                                              
                            | 
|   | 
| Theorem | spc2egv 2854* | 
Existential specialization with 2 quantifiers, using implicit
       substitution.  (Contributed by NM, 3-Aug-1995.)
 | 
                                                                      | 
|   | 
| Theorem | spc2gv 2855* | 
Specialization with 2 quantifiers, using implicit substitution.
       (Contributed by NM, 27-Apr-2004.)
 | 
                                                                      | 
|   | 
| Theorem | spc3egv 2856* | 
Existential specialization with 3 quantifiers, using implicit
       substitution.  (Contributed by NM, 12-May-2008.)
 | 
                                                                      
                  | 
|   | 
| Theorem | spc3gv 2857* | 
Specialization with 3 quantifiers, using implicit substitution.
       (Contributed by NM, 12-May-2008.)
 | 
                                                                      
                  | 
|   | 
| Theorem | spcv 2858* | 
Rule of specialization, using implicit substitution.  (Contributed by
       NM, 22-Jun-1994.)
 | 
                    
                                | 
|   | 
| Theorem | spcev 2859* | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 31-Dec-1993.)  (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 | 
                    
                                | 
|   | 
| Theorem | spc2ev 2860* | 
Existential specialization, using implicit substitution.  (Contributed
       by NM, 3-Aug-1995.)
 | 
                                                                              | 
|   | 
| Theorem | rspct 2861* | 
A closed version of rspc 2862.  (Contributed by Andrew Salmon,
       6-Jun-2011.)
 | 
                   
                    
                
        | 
|   | 
| Theorem | rspc 2862* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 19-Apr-2005.)  (Revised by Mario Carneiro, 11-Oct-2016.)
 | 
                  
                                        
       | 
|   | 
| Theorem | rspce 2863* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by NM, 26-May-1998.)  (Revised by Mario Carneiro,
       11-Oct-2016.)
 | 
                  
                                               | 
|   | 
| Theorem | rspcv 2864* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 26-May-1998.)
 | 
                                              
       | 
|   | 
| Theorem | rspccv 2865* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 2-Feb-2006.)
 | 
                                     
                | 
|   | 
| Theorem | rspcva 2866* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 13-Sep-2005.)
 | 
                                          
           | 
|   | 
| Theorem | rspccva 2867* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 26-Jul-2006.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                  
                   | 
|   | 
| Theorem | rspcev 2868* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by NM, 26-May-1998.)
 | 
                                                     | 
|   | 
| Theorem | rspcimdv 2869* | 
Restricted specialization, using implicit substitution.  (Contributed
         by Mario Carneiro, 4-Jan-2017.)
 | 
                                                              
             | 
|   | 
| Theorem | rspcimedv 2870* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                           | 
|   | 
| Theorem | rspcdv 2871* | 
Restricted specialization, using implicit substitution.  (Contributed by
       NM, 17-Feb-2007.)  (Revised by Mario Carneiro, 4-Jan-2017.)
 | 
                                                                           | 
|   | 
| Theorem | rspcedv 2872* | 
Restricted existential specialization, using implicit substitution.
       (Contributed by FL, 17-Apr-2007.)  (Revised by Mario Carneiro,
       4-Jan-2017.)
 | 
                                                               
            | 
|   | 
| Theorem | rspcdva 2873* | 
Restricted specialization, using implicit substitution.  (Contributed by
       Thierry Arnoux, 21-Jun-2020.)
 | 
                                                                               | 
|   | 
| Theorem | rspcedvd 2874* | 
Restricted existential specialization, using implicit substitution.
       Variant of rspcedv 2872.  (Contributed by AV, 27-Nov-2019.)
 | 
                                                                                     | 
|   | 
| Theorem | rspcime 2875* | 
Prove a restricted existential.  (Contributed by Rohan Ridenour,
       3-Aug-2023.)
 | 
                                                               | 
|   | 
| Theorem | rspceaimv 2876* | 
Restricted existential specialization of a universally quantified
       implication.  (Contributed by BJ, 24-Aug-2022.)
 | 
                                          
                
                     | 
|   | 
| Theorem | rspcedeq1vd 2877* | 
Restricted existential specialization, using implicit substitution.
         Variant of rspcedvd 2874 for equations, in which the left hand side
         depends on the quantified variable.  (Contributed by AV,
         24-Dec-2019.)
 | 
                                                        
               | 
|   | 
| Theorem | rspcedeq2vd 2878* | 
Restricted existential specialization, using implicit substitution.
       Variant of rspcedvd 2874 for equations, in which the right hand side
       depends on the quantified variable.  (Contributed by AV,
       24-Dec-2019.)
 | 
                                                        
               | 
|   | 
| Theorem | rspc2 2879* | 
2-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 9-Nov-2012.)
 | 
                                  
                          
                                                     
       | 
|   | 
| Theorem | rspc2gv 2880* | 
Restricted specialization with two quantifiers, using implicit
       substitution.  (Contributed by BJ, 2-Dec-2021.)
 | 
                                                            
                    | 
|   | 
| Theorem | rspc2v 2881* | 
2-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 13-Sep-1999.)
 | 
                                                                            
                    | 
|   | 
| Theorem | rspc2va 2882* | 
2-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 18-Jun-2014.)
 | 
                                                                    
                            | 
|   | 
| Theorem | rspc2ev 2883* | 
2-variable restricted existential specialization, using implicit
       substitution.  (Contributed by NM, 16-Oct-1999.)
 | 
                                                                                      
        | 
|   | 
| Theorem | rspc3v 2884* | 
3-variable restricted specialization, using implicit substitution.
       (Contributed by NM, 10-May-2005.)
 | 
                                                                                                        
        
                  
       | 
|   | 
| Theorem | rspc3ev 2885* | 
3-variable restricted existentional specialization, using implicit
       substitution.  (Contributed by NM, 25-Jul-2012.)
 | 
                                                                                              
        
                                   | 
|   | 
| Theorem | rspceeqv 2886* | 
Restricted existential specialization in an equality, using implicit
       substitution.  (Contributed by BJ, 2-Sep-2022.)
 | 
                                                       
    | 
|   | 
| Theorem | eqvinc 2887* | 
A variable introduction law for class equality.  (Contributed by NM,
       14-Apr-1995.)  (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 | 
                                            | 
|   | 
| Theorem | eqvincg 2888* | 
A variable introduction law for class equality, deduction version.
       (Contributed by Thierry Arnoux, 2-Mar-2017.)
 | 
                                        | 
|   | 
| Theorem | eqvincf 2889 | 
A variable introduction law for class equality, using bound-variable
       hypotheses instead of distinct variable conditions.  (Contributed by NM,
       14-Sep-2003.)
 | 
                                                                    | 
|   | 
| Theorem | alexeq 2890* | 
Two ways to express substitution of   for   in
 .
       (Contributed by NM, 2-Mar-1995.)
 | 
                     
                           | 
|   | 
| Theorem | ceqex 2891* | 
Equality implies equivalence with substitution.  (Contributed by NM,
       2-Mar-1995.)
 | 
                                | 
|   | 
| Theorem | ceqsexg 2892* | 
A representation of explicit substitution of a class for a variable,
       inferred from an implicit substitution hypothesis.  (Contributed by NM,
       11-Oct-2004.)
 | 
                  
                                    
                | 
|   | 
| Theorem | ceqsexgv 2893* | 
Elimination of an existential quantifier, using implicit substitution.
       (Contributed by NM, 29-Dec-1996.)
 | 
                                          
                | 
|   | 
| Theorem | ceqsrexv 2894* | 
Elimination of a restricted existential quantifier, using implicit
       substitution.  (Contributed by NM, 30-Apr-2004.)
 | 
                                                               | 
|   | 
| Theorem | ceqsrexbv 2895* | 
Elimination of a restricted existential quantifier, using implicit
       substitution.  (Contributed by Mario Carneiro, 14-Mar-2014.)
 | 
                                                               | 
|   | 
| Theorem | ceqsrex2v 2896* | 
Elimination of a restricted existential quantifier, using implicit
       substitution.  (Contributed by NM, 29-Oct-2005.)
 | 
                                                                            
       
                                 | 
|   | 
| Theorem | clel2 2897* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 18-Aug-1993.)
 | 
                                            | 
|   | 
| Theorem | clel3g 2898* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 13-Aug-2005.)
 | 
                                        | 
|   | 
| Theorem | clel3 2899* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 18-Aug-1993.)
 | 
                                            | 
|   | 
| Theorem | clel4 2900* | 
An alternate definition of class membership when the class is a set.
       (Contributed by NM, 18-Aug-1993.)
 | 
                                            |