HomeHome Intuitionistic Logic Explorer
Theorem List (p. 29 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2801-2900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvtoclri 2801* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  A. x  e.  B  ph   =>    |-  ( A  e.  B  ->  ps )
 
Theoremspcimgft 2802 A closed version of spcimgf 2806. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph  ->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcgft 2803 A closed version of spcgf 2808. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcimegft 2804 A closed version of spcimegf 2807. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) ) 
 ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
 
Theoremspcegft 2805 A closed version of spcegf 2809. (Contributed by Jim Kingdon, 22-Jun-2018.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
 
Theoremspcimgf 2806 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph  ->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcimegf 2807 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  ( ps  ->  ph ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcgf 2808 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegf 2809 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcimdv 2810* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  ch )
 )
 
Theoremspcdv 2811* Rule of specialization, using implicit substitution. Analogous to rspcdv 2833. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  ->  ch ) )
 
Theoremspcimedv 2812* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x ps )
 )
 
Theoremspcgv 2813* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegv 2814* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcedv 2815* Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  ch )   &    |-  ( x  =  X  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremspc2egv 2816* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
 
Theoremspc2gv 2817* Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps ) )
 
Theoremspc3egv 2818* Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps 
 ->  E. x E. y E. z ph ) )
 
Theoremspc3gv 2819* Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x A. y A. z ph  ->  ps ) )
 
Theoremspcv 2820* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspcev 2821* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x ph )
 
Theoremspc2ev 2822* Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x E. y ph )
 
Theoremrspct 2823* A closed version of rspc 2824. (Contributed by Andrew Salmon, 6-Jun-2011.)
 |- 
 F/ x ps   =>    |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 ) )
 
Theoremrspc 2824* Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 )
 
Theoremrspce 2825* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
 
Theoremrspcv 2826* Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 )
 
Theoremrspccv 2827* Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps )
 )
 
Theoremrspcva 2828* Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  ps )
 
Theoremrspccva 2829* Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A. x  e.  B  ph  /\  A  e.  B )  ->  ps )
 
Theoremrspcev 2830* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
 
Theoremrspcimdv 2831* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
 
Theoremrspcimedv 2832* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps ) )
 
Theoremrspcdv 2833* Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps  ->  ch ) )
 
Theoremrspcedv 2834* Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps ) )
 
Theoremrspcdva 2835* Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.)
 |-  ( x  =  C  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ch )
 
Theoremrspcedvd 2836* Restricted existential specialization, using implicit substitution. Variant of rspcedv 2834. (Contributed by AV, 27-Nov-2019.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ch )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremrspcime 2837* Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ( ph  /\  x  =  A )  ->  ps )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremrspceaimv 2838* Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch ) )  ->  E. x  e.  B  A. y  e.  C  (
 ph  ->  ch ) )
 
Theoremrspcedeq1vd 2839* Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2836 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  E. x  e.  B  C  =  D )
 
Theoremrspcedeq2vd 2840* Restricted existential specialization, using implicit substitution. Variant of rspcedvd 2836 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  E. x  e.  B  C  =  D )
 
Theoremrspc2 2841* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.)
 |- 
 F/ x ch   &    |-  F/ y ps   &    |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  ( y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps )
 )
 
Theoremrspc2gv 2842* Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e.  V  A. y  e.  W  ph  ->  ps ) )
 
Theoremrspc2v 2843* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
 
Theoremrspc2va 2844* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( ( A  e.  C  /\  B  e.  D )  /\  A. x  e.  C  A. y  e.  D  ph )  ->  ps )
 
Theoremrspc2ev 2845* 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D  /\  ps )  ->  E. x  e.  C  E. y  e.  D  ph )
 
Theoremrspc3v 2846* 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  th ) )   &    |-  (
 z  =  C  ->  ( th  <->  ps ) )   =>    |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  ->  ( A. x  e.  R  A. y  e.  S  A. z  e.  T  ph  ->  ps )
 )
 
Theoremrspc3ev 2847* 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  ( ch  <->  th ) )   &    |-  (
 z  =  C  ->  ( th  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T )  /\  ps )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
 
Theoremrspceeqv 2848* Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
 |-  ( x  =  A  ->  C  =  D )   =>    |-  ( ( A  e.  B  /\  E  =  D )  ->  E. x  e.  B  E  =  C )
 
Theoremeqvinc 2849* A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   =>    |-  ( A  =  B 
 <-> 
 E. x ( x  =  A  /\  x  =  B ) )
 
Theoremeqvincg 2850* A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.)
 |-  ( A  e.  V  ->  ( A  =  B  <->  E. x ( x  =  A  /\  x  =  B ) ) )
 
Theoremeqvincf 2851 A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  A  e.  _V   =>    |-  ( A  =  B  <->  E. x ( x  =  A  /\  x  =  B ) )
 
Theoremalexeq 2852* Two ways to express substitution of 
A for  x in  ph. (Contributed by NM, 2-Mar-1995.)
 |-  A  e.  _V   =>    |-  ( A. x ( x  =  A  -> 
 ph )  <->  E. x ( x  =  A  /\  ph )
 )
 
Theoremceqex 2853* Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
 |-  ( x  =  A  ->  ( ph  <->  E. x ( x  =  A  /\  ph )
 ) )
 
Theoremceqsexg 2854* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
 
Theoremceqsexgv 2855* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
 
Theoremceqsrexv 2856* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps ) )
 
Theoremceqsrexbv 2857* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ( A  e.  B  /\  ps ) )
 
Theoremceqsrex2v 2858* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  ch ) )
 
Theoremclel2 2859* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <-> 
 A. x ( x  =  A  ->  x  e.  B ) )
 
Theoremclel3g 2860* An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
 |-  ( B  e.  V  ->  ( A  e.  B  <->  E. x ( x  =  B  /\  A  e.  x ) ) )
 
Theoremclel3 2861* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
 |-  B  e.  _V   =>    |-  ( A  e.  B 
 <-> 
 E. x ( x  =  B  /\  A  e.  x ) )
 
Theoremclel4 2862* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
 |-  B  e.  _V   =>    |-  ( A  e.  B 
 <-> 
 A. x ( x  =  B  ->  A  e.  x ) )
 
Theoremclel5 2863* Alternate definition of class membership: a class  X is an element of another class  A iff there is an element of  A equal to  X. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
 |-  ( X  e.  A  <->  E. x  e.  A  X  =  x )
 
Theorempm13.183 2864* Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only  A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
 |-  ( A  e.  V  ->  ( A  =  B  <->  A. z ( z  =  A  <->  z  =  B ) ) )
 
Theoremrr19.3v 2865* Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 25-Oct-2012.)
 |-  ( A. x  e.  A  A. y  e.  A  ph  <->  A. x  e.  A  ph )
 
Theoremrr19.28v 2866* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
 |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <-> 
 A. x  e.  A  ( ph  /\  A. y  e.  A  ps ) )
 
Theoremelabgt 2867* Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2872.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) ) ) 
 ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelabgf 2868 Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelabf 2869* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  |  ph }  <->  ps )
 
Theoremelab 2870* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  { x  |  ph }  <->  ps )
 
Theoremelabd 2871* Explicit demonstration the class 
{ x  |  ps } is not empty by the example  X. (Contributed by RP, 12-Aug-2020.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  ch )   &    |-  ( x  =  X  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremelabg 2872* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelab2g 2873* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  B  =  { x  |  ph }   =>    |-  ( A  e.  V  ->  ( A  e.  B  <->  ps ) )
 
Theoremelab2 2874* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  B  =  { x  |  ph }   =>    |-  ( A  e.  B  <->  ps )
 
Theoremelab4g 2875* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  B  =  { x  |  ph }   =>    |-  ( A  e.  B  <->  ( A  e.  _V  /\  ps ) )
 
Theoremelab3gf 2876 Membership in a class abstraction, with a weaker antecedent than elabgf 2868. (Contributed by NM, 6-Sep-2011.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( ps 
 ->  A  e.  B ) 
 ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelab3g 2877* Membership in a class abstraction, with a weaker antecedent than elabg 2872. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( ps 
 ->  A  e.  B ) 
 ->  ( A  e.  { x  |  ph }  <->  ps ) )
 
Theoremelab3 2878* Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.)
 |-  ( ps  ->  A  e.  _V )   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  |  ph }  <->  ps )
 
Theoremelrabi 2879* Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
 |-  ( A  e.  { x  e.  V  |  ph
 }  ->  A  e.  V )
 
Theoremelrabf 2880 Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/ x ps   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ( A  e.  B  /\  ps ) )
 
Theoremelrab3t 2881* Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 2883.) (Contributed by Thierry Arnoux, 31-Aug-2017.)
 |-  ( ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  B )  ->  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ps ) )
 
Theoremelrab 2882* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ( A  e.  B  /\  ps ) )
 
Theoremelrab3 2883* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ps ) )
 
Theoremelrabd 2884* Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 2882. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( x  =  A  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A  e.  B )   &    |-  ( ph  ->  ch )   =>    |-  ( ph  ->  A  e.  { x  e.  B  |  ps } )
 
Theoremelrab2 2885* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  C  =  { x  e.  B  |  ph }   =>    |-  ( A  e.  C  <->  ( A  e.  B  /\  ps ) )
 
Theoremralab 2886* Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
 |-  ( y  =  x 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  { y  |  ph } ch  <->  A. x ( ps 
 ->  ch ) )
 
Theoremralrab 2887* Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
 |-  ( y  =  x 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  { y  e.  A  |  ph } ch  <->  A. x  e.  A  ( ps  ->  ch )
 )
 
Theoremrexab 2888* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.)
 |-  ( y  =  x 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  { y  |  ph } ch  <->  E. x ( ps 
 /\  ch ) )
 
Theoremrexrab 2889* Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
 |-  ( y  =  x 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  { y  e.  A  |  ph } ch  <->  E. x  e.  A  ( ps  /\  ch )
 )
 
Theoremralab2 2890* Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( x  =  y 
 ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  { y  |  ph } ps  <->  A. y ( ph  ->  ch ) )
 
Theoremralrab2 2891* Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( x  =  y 
 ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  { y  e.  A  |  ph } ps  <->  A. y  e.  A  ( ph  ->  ch )
 )
 
Theoremrexab2 2892* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( x  =  y 
 ->  ( ps  <->  ch ) )   =>    |-  ( E. x  e.  { y  |  ph } ps  <->  E. y ( ph  /\ 
 ch ) )
 
Theoremrexrab2 2893* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( x  =  y 
 ->  ( ps  <->  ch ) )   =>    |-  ( E. x  e.  { y  e.  A  |  ph } ps  <->  E. y  e.  A  ( ph  /\  ch )
 )
 
Theoremabidnf 2894* Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
 |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
 
Theoremdedhb 2895* A deduction theorem for converting the inference  |- 
F/_ x A =>  |-  ph into a closed theorem. Use nfa1 1529 and nfab 2313 to eliminate the hypothesis of the substitution instance  ps of the inference. For converting the inference form into a deduction form, abidnf 2894 is useful. (Contributed by NM, 8-Dec-2006.)
 |-  ( A  =  {
 z  |  A. x  z  e.  A }  ->  ( ph  <->  ps ) )   &    |-  ps   =>    |-  ( F/_ x A  ->  ph )
 
Theoremeqeu 2896* A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps  /\ 
 A. x ( ph  ->  x  =  A ) )  ->  E! x ph )
 
Theoremeueq 2897* Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
 |-  ( A  e.  _V  <->  E! x  x  =  A )
 
Theoremeueq1 2898* Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.)
 |-  A  e.  _V   =>    |-  E! x  x  =  A
 
Theoremeueq2dc 2899* Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  (DECID 
 ph  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
 
Theoremeueq3dc 2900* Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  -.  ( ph  /\  ps )   =>    |-  (DECID  ph  ->  (DECID  ps 
 ->  E! x ( (
 ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C )
 ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >