ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isset Unicode version

Theorem isset 2806
Description: Two ways to say " A is a set": A class  A is a member of the universal class  _V (see df-v 2801) if and only if the class  A exists (i.e. there exists some set  x equal to class 
A). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device " A  e.  _V " to mean " A is a set" very frequently, for example in uniex 4528. Note the when  A is not a set, it is called a proper class. In some theorems, such as uniexg 4530, in order to shorten certain proofs we use the more general antecedent  A  e.  V instead of  A  e.  _V to mean " A is a set."

Note that a constant is implicitly considered distinct from all variables. This is why  _V is not included in the distinct variable list, even though df-clel 2225 requires that the expression substituted for  B not contain  x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
isset  |-  ( A  e.  _V  <->  E. x  x  =  A )
Distinct variable group:    x, A

Proof of Theorem isset
StepHypRef Expression
1 df-clel 2225 . 2  |-  ( A  e.  _V  <->  E. x
( x  =  A  /\  x  e.  _V ) )
2 vex 2802 . . . 4  |-  x  e. 
_V
32biantru 302 . . 3  |-  ( x  =  A  <->  ( x  =  A  /\  x  e.  _V ) )
43exbii 1651 . 2  |-  ( E. x  x  =  A  <->  E. x ( x  =  A  /\  x  e. 
_V ) )
51, 4bitr4i 187 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  issetf  2807  isseti  2808  issetri  2809  elex  2811  elisset  2814  vtoclg1f  2860  ceqex  2930  eueq  2974  moeq  2978  mosubt  2980  ru  3027  sbc5  3052  snprc  3731  snmb  3788  snssb  3801  vprc  4216  opelopabsb  4348  eusvnfb  4545  elrelimasn  5094  euiotaex  5295  fvmptdf  5722  fvmptdv2  5724  fmptco  5801  brabvv  6050  ovmpodf  6136  ovi3  6142  tfrlemibxssdm  6473  tfr1onlembxssdm  6489  tfrcllembxssdm  6502  ecexr  6685  snexxph  7117  fnpr2ob  13373  bj-vprc  16259  bj-vnex  16261  bj-2inf  16301
  Copyright terms: Public domain W3C validator