ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isset Unicode version

Theorem isset 2769
Description: Two ways to say " A is a set": A class  A is a member of the universal class  _V (see df-v 2765) if and only if the class  A exists (i.e. there exists some set  x equal to class 
A). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device " A  e.  _V " to mean " A is a set" very frequently, for example in uniex 4472. Note the when  A is not a set, it is called a proper class. In some theorems, such as uniexg 4474, in order to shorten certain proofs we use the more general antecedent  A  e.  V instead of  A  e.  _V to mean " A is a set."

Note that a constant is implicitly considered distinct from all variables. This is why  _V is not included in the distinct variable list, even though df-clel 2192 requires that the expression substituted for  B not contain  x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
isset  |-  ( A  e.  _V  <->  E. x  x  =  A )
Distinct variable group:    x, A

Proof of Theorem isset
StepHypRef Expression
1 df-clel 2192 . 2  |-  ( A  e.  _V  <->  E. x
( x  =  A  /\  x  e.  _V ) )
2 vex 2766 . . . 4  |-  x  e. 
_V
32biantru 302 . . 3  |-  ( x  =  A  <->  ( x  =  A  /\  x  e.  _V ) )
43exbii 1619 . 2  |-  ( E. x  x  =  A  <->  E. x ( x  =  A  /\  x  e. 
_V ) )
51, 4bitr4i 187 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  issetf  2770  isseti  2771  issetri  2772  elex  2774  elisset  2777  vtoclg1f  2823  ceqex  2891  eueq  2935  moeq  2939  mosubt  2941  ru  2988  sbc5  3013  snprc  3687  snssb  3755  vprc  4165  opelopabsb  4294  eusvnfb  4489  elrelimasn  5035  euiotaex  5235  fvmptdf  5649  fvmptdv2  5651  fmptco  5728  brabvv  5968  ovmpodf  6054  ovi3  6060  tfrlemibxssdm  6385  tfr1onlembxssdm  6401  tfrcllembxssdm  6414  ecexr  6597  snexxph  7016  fnpr2ob  12983  bj-vprc  15542  bj-vnex  15544  bj-2inf  15584
  Copyright terms: Public domain W3C validator