ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isset Unicode version

Theorem isset 2766
Description: Two ways to say " A is a set": A class  A is a member of the universal class  _V (see df-v 2762) if and only if the class  A exists (i.e. there exists some set  x equal to class 
A). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device " A  e.  _V " to mean " A is a set" very frequently, for example in uniex 4468. Note the when  A is not a set, it is called a proper class. In some theorems, such as uniexg 4470, in order to shorten certain proofs we use the more general antecedent  A  e.  V instead of  A  e.  _V to mean " A is a set."

Note that a constant is implicitly considered distinct from all variables. This is why  _V is not included in the distinct variable list, even though df-clel 2189 requires that the expression substituted for  B not contain  x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

Assertion
Ref Expression
isset  |-  ( A  e.  _V  <->  E. x  x  =  A )
Distinct variable group:    x, A

Proof of Theorem isset
StepHypRef Expression
1 df-clel 2189 . 2  |-  ( A  e.  _V  <->  E. x
( x  =  A  /\  x  e.  _V ) )
2 vex 2763 . . . 4  |-  x  e. 
_V
32biantru 302 . . 3  |-  ( x  =  A  <->  ( x  =  A  /\  x  e.  _V ) )
43exbii 1616 . 2  |-  ( E. x  x  =  A  <->  E. x ( x  =  A  /\  x  e. 
_V ) )
51, 4bitr4i 187 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  issetf  2767  isseti  2768  issetri  2769  elex  2771  elisset  2774  vtoclg1f  2819  ceqex  2887  eueq  2931  moeq  2935  mosubt  2937  ru  2984  sbc5  3009  snprc  3683  snssb  3751  vprc  4161  opelopabsb  4290  eusvnfb  4485  elrelimasn  5031  euiotaex  5231  fvmptdf  5645  fvmptdv2  5647  fmptco  5724  brabvv  5964  ovmpodf  6050  ovi3  6055  tfrlemibxssdm  6380  tfr1onlembxssdm  6396  tfrcllembxssdm  6409  ecexr  6592  snexxph  7009  fnpr2ob  12923  bj-vprc  15388  bj-vnex  15390  bj-2inf  15430
  Copyright terms: Public domain W3C validator