![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eleq1 2256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eleq12i 2261 eqeltri 2266 intexrabim 4183 abssexg 4212 abnex 4479 snnex 4480 pwexb 4506 sucexb 4530 omex 4626 iprc 4931 dfse2 5039 fressnfv 5746 fnotovb 5962 f1stres 6214 f2ndres 6215 ottposg 6310 dftpos4 6318 frecabex 6453 oacl 6515 diffifi 6952 djuexb 7105 pitonn 7910 axicn 7925 pnfnre 8063 mnfnre 8064 0mnnnnn0 9275 nprmi 12265 issubm 13047 issrg 13464 srgfcl 13472 subrngrng 13701 txdis1cn 14457 xmeterval 14614 expcncf 14788 gausslemma2dlem1a 15215 2lgslem4 15260 bj-sucexg 15484 |
Copyright terms: Public domain | W3C validator |