| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 |
|
| Ref | Expression |
|---|---|
| eleq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 |
. 2
| |
| 2 | eleq1 2259 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleq12i 2264 eqeltri 2269 intexrabim 4187 abssexg 4216 abnex 4483 snnex 4484 pwexb 4510 sucexb 4534 omex 4630 iprc 4935 dfse2 5043 fressnfv 5752 fnotovb 5969 f1stres 6221 f2ndres 6222 ottposg 6317 dftpos4 6325 frecabex 6460 oacl 6522 diffifi 6959 djuexb 7114 pitonn 7920 axicn 7935 pnfnre 8073 mnfnre 8074 0mnnnnn0 9286 nprmi 12305 issubm 13151 issrg 13568 srgfcl 13576 subrngrng 13805 txdis1cn 14561 xmeterval 14718 expcncf 14892 gausslemma2dlem1a 15346 2lgslem4 15391 bj-sucexg 15615 |
| Copyright terms: Public domain | W3C validator |