| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eleq1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| eleq1i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1i.1 | 
. 2
 | |
| 2 | eleq1 2259 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: eleq12i 2264 eqeltri 2269 intexrabim 4186 abssexg 4215 abnex 4482 snnex 4483 pwexb 4509 sucexb 4533 omex 4629 iprc 4934 dfse2 5042 fressnfv 5749 fnotovb 5965 f1stres 6217 f2ndres 6218 ottposg 6313 dftpos4 6321 frecabex 6456 oacl 6518 diffifi 6955 djuexb 7110 pitonn 7915 axicn 7930 pnfnre 8068 mnfnre 8069 0mnnnnn0 9281 nprmi 12292 issubm 13104 issrg 13521 srgfcl 13529 subrngrng 13758 txdis1cn 14514 xmeterval 14671 expcncf 14845 gausslemma2dlem1a 15299 2lgslem4 15344 bj-sucexg 15568 | 
| Copyright terms: Public domain | W3C validator |