Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 |
Ref | Expression |
---|---|
eleq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 | |
2 | eleq1 2233 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eleq12i 2238 eqeltri 2243 intexrabim 4137 abssexg 4166 abnex 4430 snnex 4431 pwexb 4457 sucexb 4479 omex 4575 iprc 4877 dfse2 4982 fressnfv 5680 fnotovb 5893 f1stres 6135 f2ndres 6136 ottposg 6231 dftpos4 6239 frecabex 6374 oacl 6436 diffifi 6868 djuexb 7017 pitonn 7797 axicn 7812 pnfnre 7948 mnfnre 7949 0mnnnnn0 9154 nprmi 12065 issubm 12682 txdis1cn 13031 xmeterval 13188 expcncf 13345 bj-sucexg 13917 |
Copyright terms: Public domain | W3C validator |