| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 |
|
| Ref | Expression |
|---|---|
| eleq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 |
. 2
| |
| 2 | eleq1 2270 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: eleq12i 2275 eqeltri 2280 intexrabim 4213 abssexg 4242 abnex 4512 snnex 4513 pwexb 4539 sucexb 4563 omex 4659 iprc 4966 dfse2 5074 fressnfv 5794 fnotovb 6011 f1stres 6268 f2ndres 6269 ottposg 6364 dftpos4 6372 frecabex 6507 oacl 6569 diffifi 7017 djuexb 7172 pitonn 7996 axicn 8011 pnfnre 8149 mnfnre 8150 0mnnnnn0 9362 pfxccatin12lem3 11223 pfxccat3 11225 swrdccat 11226 pfxccat3a 11229 swrdccat3blem 11230 swrdccat3b 11231 nprmi 12561 issubm 13419 issrg 13842 srgfcl 13850 subrngrng 14079 txdis1cn 14865 xmeterval 15022 expcncf 15196 gausslemma2dlem1a 15650 2lgslem4 15695 bj-sucexg 16057 |
| Copyright terms: Public domain | W3C validator |