| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 |
|
| Ref | Expression |
|---|---|
| eleq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 |
. 2
| |
| 2 | eleq1 2268 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eleq12i 2273 eqeltri 2278 intexrabim 4198 abssexg 4227 abnex 4495 snnex 4496 pwexb 4522 sucexb 4546 omex 4642 iprc 4948 dfse2 5056 fressnfv 5773 fnotovb 5990 f1stres 6247 f2ndres 6248 ottposg 6343 dftpos4 6351 frecabex 6486 oacl 6548 diffifi 6993 djuexb 7148 pitonn 7963 axicn 7978 pnfnre 8116 mnfnre 8117 0mnnnnn0 9329 nprmi 12479 issubm 13337 issrg 13760 srgfcl 13768 subrngrng 13997 txdis1cn 14783 xmeterval 14940 expcncf 15114 gausslemma2dlem1a 15568 2lgslem4 15613 bj-sucexg 15895 |
| Copyright terms: Public domain | W3C validator |