| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 |
|
| Ref | Expression |
|---|---|
| eleq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 |
. 2
| |
| 2 | eleq1 2268 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eleq12i 2273 eqeltri 2278 intexrabim 4197 abssexg 4226 abnex 4494 snnex 4495 pwexb 4521 sucexb 4545 omex 4641 iprc 4947 dfse2 5055 fressnfv 5771 fnotovb 5988 f1stres 6245 f2ndres 6246 ottposg 6341 dftpos4 6349 frecabex 6484 oacl 6546 diffifi 6991 djuexb 7146 pitonn 7961 axicn 7976 pnfnre 8114 mnfnre 8115 0mnnnnn0 9327 nprmi 12446 issubm 13304 issrg 13727 srgfcl 13735 subrngrng 13964 txdis1cn 14750 xmeterval 14907 expcncf 15081 gausslemma2dlem1a 15535 2lgslem4 15580 bj-sucexg 15858 |
| Copyright terms: Public domain | W3C validator |