| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleq1i.1 |
|
| Ref | Expression |
|---|---|
| eleq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 |
. 2
| |
| 2 | eleq1 2292 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eleq12i 2297 eqeltri 2302 intexrabim 4237 abssexg 4266 abnex 4538 snnex 4539 pwexb 4565 sucexb 4589 omex 4685 iprc 4993 dfse2 5101 fressnfv 5826 fnotovb 6047 f1stres 6305 f2ndres 6306 ottposg 6401 dftpos4 6409 frecabex 6544 oacl 6606 diffifi 7056 djuexb 7211 pitonn 8035 axicn 8050 pnfnre 8188 mnfnre 8189 0mnnnnn0 9401 pfxccatin12lem3 11264 pfxccat3 11266 swrdccat 11267 pfxccat3a 11270 swrdccat3blem 11271 swrdccat3b 11272 nprmi 12646 issubm 13505 issrg 13928 srgfcl 13936 subrngrng 14166 txdis1cn 14952 xmeterval 15109 expcncf 15283 gausslemma2dlem1a 15737 2lgslem4 15782 bj-sucexg 16285 |
| Copyright terms: Public domain | W3C validator |