ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 Unicode version

Theorem ennnfonelem1 12362
Description: Lemma for ennnfone 12380. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelem1  |-  ( ph  ->  ( H `  1
)  =  { <. (/)
,  ( F `  (/) ) >. } )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j, k, n)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . 4  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . 4  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
8 0nn0 9150 . . . . 5  |-  0  e.  NN0
98a1i 9 . . . 4  |-  ( ph  ->  0  e.  NN0 )
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 12361 . . 3  |-  ( ph  ->  ( H `  (
0  +  1 ) )  =  if ( ( F `  ( `' N `  0 ) )  e.  ( F
" ( `' N `  0 ) ) ,  ( H ` 
0 ) ,  ( ( H `  0
)  u.  { <. dom  ( H `  0
) ,  ( F `
 ( `' N `  0 ) )
>. } ) ) )
11 1e0p1 9384 . . . . . 6  |-  1  =  ( 0  +  1 )
1211fveq2i 5499 . . . . 5  |-  ( H `
 1 )  =  ( H `  (
0  +  1 ) )
1312eqcomi 2174 . . . 4  |-  ( H `
 ( 0  +  1 ) )  =  ( H `  1
)
1413a1i 9 . . 3  |-  ( ph  ->  ( H `  (
0  +  1 ) )  =  ( H `
 1 ) )
15 0zd 9224 . . . . . . . . . 10  |-  ( T. 
->  0  e.  ZZ )
1615, 5frec2uz0d 10355 . . . . . . . . 9  |-  ( T. 
->  ( N `  (/) )  =  0 )
1716mptru 1357 . . . . . . . 8  |-  ( N `
 (/) )  =  0
1815, 5frec2uzf1od 10362 . . . . . . . . . 10  |-  ( T. 
->  N : om -1-1-onto-> ( ZZ>= `  0 )
)
1918mptru 1357 . . . . . . . . 9  |-  N : om
-1-1-onto-> ( ZZ>= `  0 )
20 peano1 4578 . . . . . . . . 9  |-  (/)  e.  om
21 0z 9223 . . . . . . . . . 10  |-  0  e.  ZZ
22 uzid 9501 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  0  e.  ( ZZ>= `  0 )
)
2321, 22ax-mp 5 . . . . . . . . 9  |-  0  e.  ( ZZ>= `  0 )
24 f1ocnvfvb 5759 . . . . . . . . 9  |-  ( ( N : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om  /\  0  e.  ( ZZ>= ` 
0 ) )  -> 
( ( N `  (/) )  =  0  <->  ( `' N `  0 )  =  (/) ) )
2519, 20, 23, 24mp3an 1332 . . . . . . . 8  |-  ( ( N `  (/) )  =  0  <->  ( `' N `  0 )  =  (/) )
2617, 25mpbi 144 . . . . . . 7  |-  ( `' N `  0 )  =  (/)
2726fveq2i 5499 . . . . . 6  |-  ( F `
 ( `' N `  0 ) )  =  ( F `  (/) )
2826imaeq2i 4951 . . . . . 6  |-  ( F
" ( `' N `  0 ) )  =  ( F " (/) )
2927, 28eleq12i 2238 . . . . 5  |-  ( ( F `  ( `' N `  0 ) )  e.  ( F
" ( `' N `  0 ) )  <-> 
( F `  (/) )  e.  ( F " (/) ) )
3029a1i 9 . . . 4  |-  ( ph  ->  ( ( F `  ( `' N `  0 ) )  e.  ( F
" ( `' N `  0 ) )  <-> 
( F `  (/) )  e.  ( F " (/) ) ) )
311, 2, 3, 4, 5, 6, 7ennnfonelem0 12360 . . . 4  |-  ( ph  ->  ( H `  0
)  =  (/) )
3231dmeqd 4813 . . . . . . 7  |-  ( ph  ->  dom  ( H ` 
0 )  =  dom  (/) )
3327a1i 9 . . . . . . 7  |-  ( ph  ->  ( F `  ( `' N `  0 ) )  =  ( F `
 (/) ) )
3432, 33opeq12d 3773 . . . . . 6  |-  ( ph  -> 
<. dom  ( H ` 
0 ) ,  ( F `  ( `' N `  0 ) ) >.  =  <. dom  (/) ,  ( F `  (/) ) >. )
3534sneqd 3596 . . . . 5  |-  ( ph  ->  { <. dom  ( H `  0 ) ,  ( F `  ( `' N `  0 ) ) >. }  =  { <. dom  (/) ,  ( F `
 (/) ) >. } )
3631, 35uneq12d 3282 . . . 4  |-  ( ph  ->  ( ( H ` 
0 )  u.  { <. dom  ( H ` 
0 ) ,  ( F `  ( `' N `  0 ) ) >. } )  =  ( (/)  u.  { <. dom  (/) ,  ( F `  (/) ) >. } ) )
3730, 31, 36ifbieq12d 3552 . . 3  |-  ( ph  ->  if ( ( F `
 ( `' N `  0 ) )  e.  ( F "
( `' N ` 
0 ) ) ,  ( H `  0
) ,  ( ( H `  0 )  u.  { <. dom  ( H `  0 ) ,  ( F `  ( `' N `  0 ) ) >. } ) )  =  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) ) )
3810, 14, 373eqtr3d 2211 . 2  |-  ( ph  ->  ( H `  1
)  =  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) ) )
39 noel 3418 . . . . 5  |-  -.  ( F `  (/) )  e.  (/)
40 ima0 4970 . . . . . 6  |-  ( F
" (/) )  =  (/)
4140eleq2i 2237 . . . . 5  |-  ( ( F `  (/) )  e.  ( F " (/) )  <->  ( F `  (/) )  e.  (/) )
4239, 41mtbir 666 . . . 4  |-  -.  ( F `  (/) )  e.  ( F " (/) )
4342iffalsei 3535 . . 3  |-  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) )  =  ( (/)  u. 
{ <. dom  (/) ,  ( F `  (/) ) >. } )
44 uncom 3271 . . . 4  |-  ( (/)  u. 
{ <. dom  (/) ,  ( F `  (/) ) >. } )  =  ( { <. dom  (/) ,  ( F `  (/) ) >. }  u.  (/) )
45 un0 3448 . . . 4  |-  ( {
<. dom  (/) ,  ( F `
 (/) ) >. }  u.  (/) )  =  { <. dom  (/) ,  ( F `  (/) ) >. }
4644, 45eqtri 2191 . . 3  |-  ( (/)  u. 
{ <. dom  (/) ,  ( F `  (/) ) >. } )  =  { <. dom  (/) ,  ( F `
 (/) ) >. }
47 dm0 4825 . . . . 5  |-  dom  (/)  =  (/)
4847opeq1i 3768 . . . 4  |-  <. dom  (/) ,  ( F `  (/) ) >.  =  <. (/) ,  ( F `
 (/) ) >.
4948sneqi 3595 . . 3  |-  { <. dom  (/) ,  ( F `  (/) ) >. }  =  { <.
(/) ,  ( F `  (/) ) >. }
5043, 46, 493eqtri 2195 . 2  |-  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) )  =  { <. (/)
,  ( F `  (/) ) >. }
5138, 50eqtrdi 2219 1  |-  ( ph  ->  ( H `  1
)  =  { <. (/)
,  ( F `  (/) ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104  DECID wdc 829    = wceq 1348   T. wtru 1349    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449    u. cun 3119   (/)c0 3414   ifcif 3526   {csn 3583   <.cop 3586    |-> cmpt 4050   suc csuc 4350   omcom 4574   `'ccnv 4610   dom cdm 4611   "cima 4614   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  freccfrec 6369    ^pm cpm 6627   0cc0 7774   1c1 7775    + caddc 7777    - cmin 8090   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  ennnfonelemhom  12370
  Copyright terms: Public domain W3C validator