ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem1 Unicode version

Theorem ennnfonelem1 11920
Description: Lemma for ennnfone 11938. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelem1  |-  ( ph  ->  ( H `  1
)  =  { <. (/)
,  ( F `  (/) ) >. } )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    x, H, y    j, J    x, N, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    F( j, k, n)    G( x, y, k, n)    H( j, k, n)    J( x, y, k, n)    N( j, k, n)

Proof of Theorem ennnfonelem1
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . 4  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . 4  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
8 0nn0 8992 . . . . 5  |-  0  e.  NN0
98a1i 9 . . . 4  |-  ( ph  ->  0  e.  NN0 )
101, 2, 3, 4, 5, 6, 7, 9ennnfonelemp1 11919 . . 3  |-  ( ph  ->  ( H `  (
0  +  1 ) )  =  if ( ( F `  ( `' N `  0 ) )  e.  ( F
" ( `' N `  0 ) ) ,  ( H ` 
0 ) ,  ( ( H `  0
)  u.  { <. dom  ( H `  0
) ,  ( F `
 ( `' N `  0 ) )
>. } ) ) )
11 1e0p1 9223 . . . . . 6  |-  1  =  ( 0  +  1 )
1211fveq2i 5424 . . . . 5  |-  ( H `
 1 )  =  ( H `  (
0  +  1 ) )
1312eqcomi 2143 . . . 4  |-  ( H `
 ( 0  +  1 ) )  =  ( H `  1
)
1413a1i 9 . . 3  |-  ( ph  ->  ( H `  (
0  +  1 ) )  =  ( H `
 1 ) )
15 0zd 9066 . . . . . . . . . 10  |-  ( T. 
->  0  e.  ZZ )
1615, 5frec2uz0d 10172 . . . . . . . . 9  |-  ( T. 
->  ( N `  (/) )  =  0 )
1716mptru 1340 . . . . . . . 8  |-  ( N `
 (/) )  =  0
1815, 5frec2uzf1od 10179 . . . . . . . . . 10  |-  ( T. 
->  N : om -1-1-onto-> ( ZZ>= `  0 )
)
1918mptru 1340 . . . . . . . . 9  |-  N : om
-1-1-onto-> ( ZZ>= `  0 )
20 peano1 4508 . . . . . . . . 9  |-  (/)  e.  om
21 0z 9065 . . . . . . . . . 10  |-  0  e.  ZZ
22 uzid 9340 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  0  e.  ( ZZ>= `  0 )
)
2321, 22ax-mp 5 . . . . . . . . 9  |-  0  e.  ( ZZ>= `  0 )
24 f1ocnvfvb 5681 . . . . . . . . 9  |-  ( ( N : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om  /\  0  e.  ( ZZ>= ` 
0 ) )  -> 
( ( N `  (/) )  =  0  <->  ( `' N `  0 )  =  (/) ) )
2519, 20, 23, 24mp3an 1315 . . . . . . . 8  |-  ( ( N `  (/) )  =  0  <->  ( `' N `  0 )  =  (/) )
2617, 25mpbi 144 . . . . . . 7  |-  ( `' N `  0 )  =  (/)
2726fveq2i 5424 . . . . . 6  |-  ( F `
 ( `' N `  0 ) )  =  ( F `  (/) )
2826imaeq2i 4879 . . . . . 6  |-  ( F
" ( `' N `  0 ) )  =  ( F " (/) )
2927, 28eleq12i 2207 . . . . 5  |-  ( ( F `  ( `' N `  0 ) )  e.  ( F
" ( `' N `  0 ) )  <-> 
( F `  (/) )  e.  ( F " (/) ) )
3029a1i 9 . . . 4  |-  ( ph  ->  ( ( F `  ( `' N `  0 ) )  e.  ( F
" ( `' N `  0 ) )  <-> 
( F `  (/) )  e.  ( F " (/) ) ) )
311, 2, 3, 4, 5, 6, 7ennnfonelem0 11918 . . . 4  |-  ( ph  ->  ( H `  0
)  =  (/) )
3231dmeqd 4741 . . . . . . 7  |-  ( ph  ->  dom  ( H ` 
0 )  =  dom  (/) )
3327a1i 9 . . . . . . 7  |-  ( ph  ->  ( F `  ( `' N `  0 ) )  =  ( F `
 (/) ) )
3432, 33opeq12d 3713 . . . . . 6  |-  ( ph  -> 
<. dom  ( H ` 
0 ) ,  ( F `  ( `' N `  0 ) ) >.  =  <. dom  (/) ,  ( F `  (/) ) >. )
3534sneqd 3540 . . . . 5  |-  ( ph  ->  { <. dom  ( H `  0 ) ,  ( F `  ( `' N `  0 ) ) >. }  =  { <. dom  (/) ,  ( F `
 (/) ) >. } )
3631, 35uneq12d 3231 . . . 4  |-  ( ph  ->  ( ( H ` 
0 )  u.  { <. dom  ( H ` 
0 ) ,  ( F `  ( `' N `  0 ) ) >. } )  =  ( (/)  u.  { <. dom  (/) ,  ( F `  (/) ) >. } ) )
3730, 31, 36ifbieq12d 3498 . . 3  |-  ( ph  ->  if ( ( F `
 ( `' N `  0 ) )  e.  ( F "
( `' N ` 
0 ) ) ,  ( H `  0
) ,  ( ( H `  0 )  u.  { <. dom  ( H `  0 ) ,  ( F `  ( `' N `  0 ) ) >. } ) )  =  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) ) )
3810, 14, 373eqtr3d 2180 . 2  |-  ( ph  ->  ( H `  1
)  =  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) ) )
39 noel 3367 . . . . 5  |-  -.  ( F `  (/) )  e.  (/)
40 ima0 4898 . . . . . 6  |-  ( F
" (/) )  =  (/)
4140eleq2i 2206 . . . . 5  |-  ( ( F `  (/) )  e.  ( F " (/) )  <->  ( F `  (/) )  e.  (/) )
4239, 41mtbir 660 . . . 4  |-  -.  ( F `  (/) )  e.  ( F " (/) )
4342iffalsei 3483 . . 3  |-  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) )  =  ( (/)  u. 
{ <. dom  (/) ,  ( F `  (/) ) >. } )
44 uncom 3220 . . . 4  |-  ( (/)  u. 
{ <. dom  (/) ,  ( F `  (/) ) >. } )  =  ( { <. dom  (/) ,  ( F `  (/) ) >. }  u.  (/) )
45 un0 3396 . . . 4  |-  ( {
<. dom  (/) ,  ( F `
 (/) ) >. }  u.  (/) )  =  { <. dom  (/) ,  ( F `  (/) ) >. }
4644, 45eqtri 2160 . . 3  |-  ( (/)  u. 
{ <. dom  (/) ,  ( F `  (/) ) >. } )  =  { <. dom  (/) ,  ( F `
 (/) ) >. }
47 dm0 4753 . . . . 5  |-  dom  (/)  =  (/)
4847opeq1i 3708 . . . 4  |-  <. dom  (/) ,  ( F `  (/) ) >.  =  <. (/) ,  ( F `
 (/) ) >.
4948sneqi 3539 . . 3  |-  { <. dom  (/) ,  ( F `  (/) ) >. }  =  { <.
(/) ,  ( F `  (/) ) >. }
5043, 46, 493eqtri 2164 . 2  |-  if ( ( F `  (/) )  e.  ( F " (/) ) ,  (/) ,  ( (/)  u.  { <. dom  (/) ,  ( F `
 (/) ) >. } ) )  =  { <. (/)
,  ( F `  (/) ) >. }
5138, 50syl6eq 2188 1  |-  ( ph  ->  ( H `  1
)  =  { <. (/)
,  ( F `  (/) ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104  DECID wdc 819    = wceq 1331   T. wtru 1332    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417    u. cun 3069   (/)c0 3363   ifcif 3474   {csn 3527   <.cop 3530    |-> cmpt 3989   suc csuc 4287   omcom 4504   `'ccnv 4538   dom cdm 4539   "cima 4542   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  freccfrec 6287    ^pm cpm 6543   0cc0 7620   1c1 7621    + caddc 7623    - cmin 7933   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pm 6545  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219
This theorem is referenced by:  ennnfonelemhom  11928
  Copyright terms: Public domain W3C validator