Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcel12g | Unicode version |
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbcel12g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2954 | . . 3 | |
2 | dfsbcq2 2954 | . . . . 5 | |
3 | 2 | abbidv 2284 | . . . 4 |
4 | dfsbcq2 2954 | . . . . 5 | |
5 | 4 | abbidv 2284 | . . . 4 |
6 | 3, 5 | eleq12d 2237 | . . 3 |
7 | nfs1v 1927 | . . . . . 6 | |
8 | 7 | nfab 2313 | . . . . 5 |
9 | nfs1v 1927 | . . . . . 6 | |
10 | 9 | nfab 2313 | . . . . 5 |
11 | 8, 10 | nfel 2317 | . . . 4 |
12 | sbab 2294 | . . . . 5 | |
13 | sbab 2294 | . . . . 5 | |
14 | 12, 13 | eleq12d 2237 | . . . 4 |
15 | 11, 14 | sbie 1779 | . . 3 |
16 | 1, 6, 15 | vtoclbg 2787 | . 2 |
17 | df-csb 3046 | . . 3 | |
18 | df-csb 3046 | . . 3 | |
19 | 17, 18 | eleq12i 2234 | . 2 |
20 | 16, 19 | bitr4di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wsb 1750 wcel 2136 cab 2151 wsbc 2951 csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: sbcnel12g 3062 sbcel1g 3064 sbcel2g 3066 sbccsb2g 3075 ixpsnval 6667 |
Copyright terms: Public domain | W3C validator |