Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqneltrrd | Unicode version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrrd.1 | |
eqneltrrd.2 |
Ref | Expression |
---|---|
eqneltrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrrd.2 | . 2 | |
2 | eqneltrrd.1 | . . 3 | |
3 | 2 | eleq1d 2239 | . 2 |
4 | 1, 3 | mtbid 667 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: ctinf 12385 |
Copyright terms: Public domain | W3C validator |