ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneltrrd GIF version

Theorem eqneltrrd 2263
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eqneltrrd.1 (𝜑𝐴 = 𝐵)
eqneltrrd.2 (𝜑 → ¬ 𝐴𝐶)
Assertion
Ref Expression
eqneltrrd (𝜑 → ¬ 𝐵𝐶)

Proof of Theorem eqneltrrd
StepHypRef Expression
1 eqneltrrd.2 . 2 (𝜑 → ¬ 𝐴𝐶)
2 eqneltrrd.1 . . 3 (𝜑𝐴 = 𝐵)
32eleq1d 2235 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mtbid 662 1 (𝜑 → ¬ 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161
This theorem is referenced by:  ctinf  12363
  Copyright terms: Public domain W3C validator