![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqneltrrd | GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqneltrrd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eqneltrrd | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
2 | eqneltrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq1d 2262 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 1, 3 | mtbid 673 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: exmidapne 7320 ctinf 12587 lssvancl2 13864 |
Copyright terms: Public domain | W3C validator |