| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqneltrd | Unicode version | ||
| Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eqneltrd.1 |
|
| eqneltrd.2 |
|
| Ref | Expression |
|---|---|
| eqneltrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.2 |
. 2
| |
| 2 | eqneltrd.1 |
. . 3
| |
| 3 | 2 | eleq1d 2298 |
. 2
|
| 4 | 1, 3 | mtbird 677 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: nnnninfeq 7295 iseqf1olemnab 10723 fprodunsn 12115 ctinfomlemom 12998 aprirr 14247 |
| Copyright terms: Public domain | W3C validator |