ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneltrd Unicode version

Theorem eqneltrd 2266
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
eqneltrd.1  |-  ( ph  ->  A  =  B )
eqneltrd.2  |-  ( ph  ->  -.  B  e.  C
)
Assertion
Ref Expression
eqneltrd  |-  ( ph  ->  -.  A  e.  C
)

Proof of Theorem eqneltrd
StepHypRef Expression
1 eqneltrd.2 . 2  |-  ( ph  ->  -.  B  e.  C
)
2 eqneltrd.1 . . 3  |-  ( ph  ->  A  =  B )
32eleq1d 2239 . 2  |-  ( ph  ->  ( A  e.  C  <->  B  e.  C ) )
41, 3mtbird 668 1  |-  ( ph  ->  -.  A  e.  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  nnnninfeq  7104  iseqf1olemnab  10444  fprodunsn  11567  ctinfomlemom  12382
  Copyright terms: Public domain W3C validator