Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqneltrd | Unicode version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | |
eqneltrd.2 |
Ref | Expression |
---|---|
eqneltrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 | |
2 | eqneltrd.1 | . . 3 | |
3 | 2 | eleq1d 2235 | . 2 |
4 | 1, 3 | mtbird 663 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: nnnninfeq 7092 iseqf1olemnab 10423 fprodunsn 11545 ctinfomlemom 12360 |
Copyright terms: Public domain | W3C validator |