| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | Unicode version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min |
|
| mtbid.maj |
|
| Ref | Expression |
|---|---|
| mtbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min |
. 2
| |
| 2 | mtbid.maj |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | mtod 664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 677 eqneltrrd 2293 neleqtrd 2294 eueq3dc 2938 efrirr 4389 fidcenumlemrks 7028 nqnq0pi 7524 zdclt 9422 xleaddadd 9981 qdclt 10354 frec2uzf1od 10517 expnegap0 10658 bcval5 10874 zfz1isolemiso 10950 seq3coll 10953 fisumss 11576 fprodssdc 11774 nninfctlemfo 12234 rpdvds 12294 oddpwdclemodd 12367 pceq0 12518 pcmpt 12539 gsumfzval 13095 ply1termlem 15086 lgseisenlem1 15419 lgsquadlem3 15428 2sqlem8a 15471 2sqlem8 15472 2omap 15750 pwle2 15753 |
| Copyright terms: Public domain | W3C validator |