Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbid | Unicode version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | |
mtbid.maj |
Ref | Expression |
---|---|
mtbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 | |
2 | mtbid.maj | . . 3 | |
3 | 2 | biimprd 157 | . 2 |
4 | 1, 3 | mtod 653 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnib 666 eqneltrrd 2263 neleqtrd 2264 eueq3dc 2900 efrirr 4331 fidcenumlemrks 6918 nqnq0pi 7379 zdclt 9268 xleaddadd 9823 frec2uzf1od 10341 expnegap0 10463 bcval5 10676 zfz1isolemiso 10752 seq3coll 10755 fisumss 11333 fprodssdc 11531 rpdvds 12031 oddpwdclemodd 12104 pceq0 12253 pcmpt 12273 2sqlem8a 13598 2sqlem8 13599 pwle2 13878 |
Copyright terms: Public domain | W3C validator |