Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbid | Unicode version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | |
mtbid.maj |
Ref | Expression |
---|---|
mtbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 | |
2 | mtbid.maj | . . 3 | |
3 | 2 | biimprd 157 | . 2 |
4 | 1, 3 | mtod 658 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnib 671 eqneltrrd 2267 neleqtrd 2268 eueq3dc 2904 efrirr 4336 fidcenumlemrks 6928 nqnq0pi 7393 zdclt 9282 xleaddadd 9837 frec2uzf1od 10355 expnegap0 10477 bcval5 10690 zfz1isolemiso 10767 seq3coll 10770 fisumss 11348 fprodssdc 11546 rpdvds 12046 oddpwdclemodd 12119 pceq0 12268 pcmpt 12288 2sqlem8a 13717 2sqlem8 13718 pwle2 13996 |
Copyright terms: Public domain | W3C validator |