| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | Unicode version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min |
|
| mtbid.maj |
|
| Ref | Expression |
|---|---|
| mtbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min |
. 2
| |
| 2 | mtbid.maj |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | mtod 664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 677 eqneltrrd 2293 neleqtrd 2294 eueq3dc 2938 efrirr 4388 fidcenumlemrks 7019 nqnq0pi 7505 zdclt 9403 xleaddadd 9962 qdclt 10335 frec2uzf1od 10498 expnegap0 10639 bcval5 10855 zfz1isolemiso 10931 seq3coll 10934 fisumss 11557 fprodssdc 11755 nninfctlemfo 12207 rpdvds 12267 oddpwdclemodd 12340 pceq0 12491 pcmpt 12512 gsumfzval 13034 ply1termlem 14978 lgseisenlem1 15311 lgsquadlem3 15320 2sqlem8a 15363 2sqlem8 15364 pwle2 15643 |
| Copyright terms: Public domain | W3C validator |