ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid Unicode version

Theorem mtbid 667
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min  |-  ( ph  ->  -.  ps )
mtbid.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mtbid  |-  ( ph  ->  -.  ch )

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2  |-  ( ph  ->  -.  ps )
2 mtbid.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimprd 157 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
41, 3mtod 658 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnib  671  eqneltrrd  2267  neleqtrd  2268  eueq3dc  2904  efrirr  4336  fidcenumlemrks  6928  nqnq0pi  7393  zdclt  9282  xleaddadd  9837  frec2uzf1od  10355  expnegap0  10477  bcval5  10690  zfz1isolemiso  10767  seq3coll  10770  fisumss  11348  fprodssdc  11546  rpdvds  12046  oddpwdclemodd  12119  pceq0  12268  pcmpt  12288  2sqlem8a  13717  2sqlem8  13718  pwle2  13996
  Copyright terms: Public domain W3C validator