ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid Unicode version

Theorem mtbid 667
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min  |-  ( ph  ->  -.  ps )
mtbid.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mtbid  |-  ( ph  ->  -.  ch )

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2  |-  ( ph  ->  -.  ps )
2 mtbid.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimprd 157 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
41, 3mtod 658 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnib  671  eqneltrrd  2267  neleqtrd  2268  eueq3dc  2904  efrirr  4338  fidcenumlemrks  6930  nqnq0pi  7400  zdclt  9289  xleaddadd  9844  frec2uzf1od  10362  expnegap0  10484  bcval5  10697  zfz1isolemiso  10774  seq3coll  10777  fisumss  11355  fprodssdc  11553  rpdvds  12053  oddpwdclemodd  12126  pceq0  12275  pcmpt  12295  2sqlem8a  13752  2sqlem8  13753  pwle2  14031
  Copyright terms: Public domain W3C validator