ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid Unicode version

Theorem mtbid 662
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min  |-  ( ph  ->  -.  ps )
mtbid.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mtbid  |-  ( ph  ->  -.  ch )

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2  |-  ( ph  ->  -.  ps )
2 mtbid.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimprd 157 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
41, 3mtod 653 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnib  666  eqneltrrd  2263  neleqtrd  2264  eueq3dc  2900  efrirr  4331  fidcenumlemrks  6918  nqnq0pi  7379  zdclt  9268  xleaddadd  9823  frec2uzf1od  10341  expnegap0  10463  bcval5  10676  zfz1isolemiso  10752  seq3coll  10755  fisumss  11333  fprodssdc  11531  rpdvds  12031  oddpwdclemodd  12104  pceq0  12253  pcmpt  12273  2sqlem8a  13598  2sqlem8  13599  pwle2  13878
  Copyright terms: Public domain W3C validator