ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid Unicode version

Theorem mtbid 673
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min  |-  ( ph  ->  -.  ps )
mtbid.maj  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mtbid  |-  ( ph  ->  -.  ch )

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2  |-  ( ph  ->  -.  ps )
2 mtbid.maj . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
32biimprd 158 . 2  |-  ( ph  ->  ( ch  ->  ps ) )
41, 3mtod 664 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnib  677  eqneltrrd  2293  neleqtrd  2294  eueq3dc  2938  efrirr  4389  fidcenumlemrks  7028  nqnq0pi  7524  zdclt  9422  xleaddadd  9981  qdclt  10354  frec2uzf1od  10517  expnegap0  10658  bcval5  10874  zfz1isolemiso  10950  seq3coll  10953  fisumss  11576  fprodssdc  11774  nninfctlemfo  12234  rpdvds  12294  oddpwdclemodd  12367  pceq0  12518  pcmpt  12539  gsumfzval  13095  ply1termlem  15086  lgseisenlem1  15419  lgsquadlem3  15428  2sqlem8a  15471  2sqlem8  15472  2omap  15750  pwle2  15753
  Copyright terms: Public domain W3C validator