ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinf Unicode version

Theorem ctinf 11979
Description: A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinf  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f  f : om -onto-> A  /\  om  ~<_  A ) )
Distinct variable group:    A, f, y, x

Proof of Theorem ctinf
Dummy variables  a  b  n  k  u  g  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctinfom 11977 . . . 4  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
21simplbi 272 . . 3  |-  ( A 
~~  NN  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
31simprbi 273 . . . 4  |-  ( A 
~~  NN  ->  E. f
( f : om -onto-> A  /\  A. n  e. 
om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) ) )
4 simpl 108 . . . . . 6  |-  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  f : om -onto-> A )
54a1i 9 . . . . 5  |-  ( A 
~~  NN  ->  ( ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )  ->  f : om -onto-> A ) )
65eximdv 1853 . . . 4  |-  ( A 
~~  NN  ->  ( E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) )  ->  E. f 
f : om -onto-> A
) )
73, 6mpd 13 . . 3  |-  ( A 
~~  NN  ->  E. f 
f : om -onto-> A
)
8 nnenom 10238 . . . . . 6  |-  NN  ~~  om
9 entr 6686 . . . . . 6  |-  ( ( A  ~~  NN  /\  NN  ~~  om )  ->  A  ~~  om )
108, 9mpan2 422 . . . . 5  |-  ( A 
~~  NN  ->  A  ~~  om )
1110ensymd 6685 . . . 4  |-  ( A 
~~  NN  ->  om  ~~  A )
12 endom 6665 . . . 4  |-  ( om 
~~  A  ->  om  ~<_  A )
1311, 12syl 14 . . 3  |-  ( A 
~~  NN  ->  om  ~<_  A )
142, 7, 133jca 1162 . 2  |-  ( A 
~~  NN  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f  f : om -onto-> A  /\  om  ~<_  A ) )
15 simp1 982 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f 
f : om -onto-> A  /\  om  ~<_  A )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
16 3simpb 980 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f 
f : om -onto-> A  /\  om  ~<_  A )  -> 
( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A ) )
17 simp2 983 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f 
f : om -onto-> A  /\  om  ~<_  A )  ->  E. f  f : om -onto-> A )
18 simp2 983 . . . . . . . 8  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  ->  f : om -onto-> A )
19 simpl1 985 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
20 equequ1 1689 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  (
x  =  y  <->  u  =  y ) )
2120dcbid 824 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (DECID  x  =  y  <-> DECID  u  =  y )
)
2221ralbidv 2438 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  ( A. y  e.  A DECID  x  =  y  <->  A. y  e.  A DECID  u  =  y ) )
2322cbvralv 2657 . . . . . . . . . . . 12  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y 
<-> 
A. u  e.  A  A. y  e.  A DECID  u  =  y )
2419, 23sylib 121 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  A. u  e.  A  A. y  e.  A DECID  u  =  y
)
25 simpl3 987 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  om  ~<_  A )
26 fof 5353 . . . . . . . . . . . . . 14  |-  ( f : om -onto-> A  -> 
f : om --> A )
27 imassrn 4900 . . . . . . . . . . . . . . 15  |-  ( f
" n )  C_  ran  f
28 frn 5289 . . . . . . . . . . . . . . 15  |-  ( f : om --> A  ->  ran  f  C_  A )
2927, 28sstrid 3113 . . . . . . . . . . . . . 14  |-  ( f : om --> A  -> 
( f " n
)  C_  A )
3026, 29syl 14 . . . . . . . . . . . . 13  |-  ( f : om -onto-> A  -> 
( f " n
)  C_  A )
3130ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  ( f "
n )  C_  A
)
32313adantl1 1138 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  (
f " n ) 
C_  A )
33 simpl2 986 . . . . . . . . . . . . 13  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  f : om -onto-> A )
34 equequ1 1689 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
3534dcbid 824 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  (DECID  x  =  y  <-> DECID  a  =  y )
)
36 equequ2 1690 . . . . . . . . . . . . . . . 16  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
3736dcbid 824 . . . . . . . . . . . . . . 15  |-  ( y  =  b  ->  (DECID  a  =  y  <-> DECID  a  =  b )
)
3835, 37cbvral2v 2668 . . . . . . . . . . . . . 14  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y 
<-> 
A. a  e.  A  A. b  e.  A DECID  a  =  b )
39 ssralv 3166 . . . . . . . . . . . . . . . . 17  |-  ( ( f " n ) 
C_  A  ->  ( A. b  e.  A DECID  a  =  b  ->  A. b  e.  ( f " n
)DECID  a  =  b ) )
4030, 39syl 14 . . . . . . . . . . . . . . . 16  |-  ( f : om -onto-> A  -> 
( A. b  e.  A DECID  a  =  b  ->  A. b  e.  (
f " n )DECID  a  =  b ) )
4140ralimdv 2503 . . . . . . . . . . . . . . 15  |-  ( f : om -onto-> A  -> 
( A. a  e.  A  A. b  e.  A DECID  a  =  b  ->  A. a  e.  A  A. b  e.  (
f " n )DECID  a  =  b ) )
42 ssralv 3166 . . . . . . . . . . . . . . 15  |-  ( ( f " n ) 
C_  A  ->  ( A. a  e.  A  A. b  e.  (
f " n )DECID  a  =  b  ->  A. a  e.  ( f " n
) A. b  e.  ( f " n
)DECID  a  =  b ) )
4330, 41, 42sylsyld 58 . . . . . . . . . . . . . 14  |-  ( f : om -onto-> A  -> 
( A. a  e.  A  A. b  e.  A DECID  a  =  b  ->  A. a  e.  (
f " n ) A. b  e.  ( f " n )DECID  a  =  b ) )
4438, 43syl5bi 151 . . . . . . . . . . . . 13  |-  ( f : om -onto-> A  -> 
( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. a  e.  (
f " n ) A. b  e.  ( f " n )DECID  a  =  b ) )
4533, 19, 44sylc 62 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  A. a  e.  ( f " n
) A. b  e.  ( f " n
)DECID  a  =  b )
46 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  n  e.  om )
47 fofun 5354 . . . . . . . . . . . . . . . . 17  |-  ( f : om -onto-> A  ->  Fun  f )
4847ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  Fun  f )
49 ordom 4528 . . . . . . . . . . . . . . . . . . 19  |-  Ord  om
50 ordtr 4308 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
om  ->  Tr  om )
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  Tr  om
52 trss 4043 . . . . . . . . . . . . . . . . . 18  |-  ( Tr 
om  ->  ( n  e. 
om  ->  n  C_  om )
)
5351, 46, 52mpsyl 65 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  n  C_  om )
5426fdmd 5287 . . . . . . . . . . . . . . . . . 18  |-  ( f : om -onto-> A  ->  dom  f  =  om )
5554ad2antrr 480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  dom  f  =  om )
5653, 55sseqtrrd 3141 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  n  C_  dom  f )
57 fores 5362 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  f  /\  n  C_ 
dom  f )  -> 
( f  |`  n
) : n -onto-> ( f " n ) )
5848, 56, 57syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  ( f  |`  n ) : n
-onto-> ( f " n
) )
59 vex 2692 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
6059resex 4868 . . . . . . . . . . . . . . . 16  |-  ( f  |`  n )  e.  _V
61 foeq1 5349 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( f  |`  n )  ->  (
g : n -onto-> ( f " n )  <-> 
( f  |`  n
) : n -onto-> ( f " n ) ) )
6260, 61spcev 2784 . . . . . . . . . . . . . . 15  |-  ( ( f  |`  n ) : n -onto-> ( f
" n )  ->  E. g  g :
n -onto-> ( f "
n ) )
6358, 62syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  E. g  g : n -onto-> ( f "
n ) )
64 foeq2 5350 . . . . . . . . . . . . . . . 16  |-  ( m  =  n  ->  (
g : m -onto-> ( f " n )  <-> 
g : n -onto-> ( f " n ) ) )
6564exbidv 1798 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  ( E. g  g :
m -onto-> ( f "
n )  <->  E. g 
g : n -onto-> ( f " n ) ) )
6665rspcev 2793 . . . . . . . . . . . . . 14  |-  ( ( n  e.  om  /\  E. g  g : n
-onto-> ( f " n
) )  ->  E. m  e.  om  E. g  g : m -onto-> ( f
" n ) )
6746, 63, 66syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  E. m  e.  om  E. g  g : m
-onto-> ( f " n
) )
68673adantl1 1138 . . . . . . . . . . . 12  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  E. m  e.  om  E. g  g : m -onto-> ( f
" n ) )
69 fidcenum 6852 . . . . . . . . . . . 12  |-  ( ( f " n )  e.  Fin  <->  ( A. a  e.  ( f " n ) A. b  e.  ( f " n )DECID  a  =  b  /\  E. m  e.  om  E. g  g : m -onto-> ( f
" n ) ) )
7045, 68, 69sylanbrc 414 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  (
f " n )  e.  Fin )
7124, 25, 32, 70inffinp1 11978 . . . . . . . . . 10  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  E. u  e.  A  -.  u  e.  ( f " n
) )
72 simprl 521 . . . . . . . . . . . 12  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n ) ) )  ->  u  e.  A )
73 foelrn 5662 . . . . . . . . . . . 12  |-  ( ( f : om -onto-> A  /\  u  e.  A
)  ->  E. k  e.  om  u  =  ( f `  k ) )
7433, 72, 73syl2an2r 585 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n ) ) )  ->  E. k  e.  om  u  =  ( f `  k ) )
75 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n
) ) )  /\  k  e.  om )  /\  u  =  (
f `  k )
)  ->  u  =  ( f `  k
) )
76 simprr 522 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n ) ) )  ->  -.  u  e.  ( f " n ) )
7776ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n
) ) )  /\  k  e.  om )  /\  u  =  (
f `  k )
)  ->  -.  u  e.  ( f " n
) )
7875, 77eqneltrrd 2237 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n
) ) )  /\  k  e.  om )  /\  u  =  (
f `  k )
)  ->  -.  (
f `  k )  e.  ( f " n
) )
7978ex 114 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n
) ) )  /\  k  e.  om )  ->  ( u  =  ( f `  k )  ->  -.  ( f `  k )  e.  ( f " n ) ) )
8079reximdva 2537 . . . . . . . . . . 11  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n ) ) )  ->  ( E. k  e.  om  u  =  ( f `  k )  ->  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
) ) )
8174, 80mpd 13 . . . . . . . . . 10  |-  ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  /\  ( u  e.  A  /\  -.  u  e.  ( f " n ) ) )  ->  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
) )
8271, 81rexlimddv 2557 . . . . . . . . 9  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  /\  n  e.  om )  ->  E. k  e.  om  -.  ( f `
 k )  e.  ( f " n
) )
8382ralrimiva 2508 . . . . . . . 8  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  ->  A. n  e.  om  E. k  e.  om  -.  ( f `  k
)  e.  ( f
" n ) )
8418, 83jca 304 . . . . . . 7  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  f : om -onto-> A  /\  om  ~<_  A )  ->  ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) ) )
85843com23 1188 . . . . . 6  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A  /\  f : om -onto-> A )  ->  ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) ) )
86853expia 1184 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  ->  ( f : om -onto-> A  ->  ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
8786eximdv 1853 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  ->  ( E. f 
f : om -onto-> A  ->  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e.  om  -.  (
f `  k )  e.  ( f " n
) ) ) )
8816, 17, 87sylc 62 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f 
f : om -onto-> A  /\  om  ~<_  A )  ->  E. f ( f : om -onto-> A  /\  A. n  e.  om  E. k  e. 
om  -.  ( f `  k )  e.  ( f " n ) ) )
8915, 88, 1sylanbrc 414 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f 
f : om -onto-> A  /\  om  ~<_  A )  ->  A  ~~  NN )
9014, 89impbii 125 1  |-  ( A 
~~  NN  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. f  f : om -onto-> A  /\  om  ~<_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    /\ w3a 963    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   class class class wbr 3937   Tr wtr 4034   Ord word 4292   omcom 4512   dom cdm 4547   ran crn 4548    |` cres 4549   "cima 4550   Fun wfun 5125   -->wf 5127   -onto->wfo 5129   ` cfv 5131    ~~ cen 6640    ~<_ cdom 6641   Fincfn 6642   NNcn 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-er 6437  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-seqfrec 10250
This theorem is referenced by:  qnnen  11980
  Copyright terms: Public domain W3C validator