![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcomd | Unicode version |
Description: Deduction form of equcom 1646, symmetry of equality. For the versions for classes, see eqcom 2097 and eqcomd 2100. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
equcomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | equcom 1646 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylib 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1390 ax-ie2 1435 ax-8 1447 ax-17 1471 ax-i9 1475 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fisumcom2 10997 |
Copyright terms: Public domain | W3C validator |