ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcomd Unicode version

Theorem equcomd 1700
Description: Deduction form of equcom 1699, symmetry of equality. For the versions for classes, see eqcom 2172 and eqcomd 2176. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1  |-  ( ph  ->  x  =  y )
Assertion
Ref Expression
equcomd  |-  ( ph  ->  y  =  x )

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2  |-  ( ph  ->  x  =  y )
2 equcom 1699 . 2  |-  ( x  =  y  <->  y  =  x )
31, 2sylib 121 1  |-  ( ph  ->  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-17 1519  ax-i9 1523
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  fisumcom2  11401  fprodcom2fi  11589  trirec0  14076
  Copyright terms: Public domain W3C validator