ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcomd Unicode version

Theorem equcomd 1731
Description: Deduction form of equcom 1730, symmetry of equality. For the versions for classes, see eqcom 2209 and eqcomd 2213. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1  |-  ( ph  ->  x  =  y )
Assertion
Ref Expression
equcomd  |-  ( ph  ->  y  =  x )

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2  |-  ( ph  ->  x  =  y )
2 equcom 1730 . 2  |-  ( x  =  y  <->  y  =  x )
31, 2sylib 122 1  |-  ( ph  ->  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie2 1518  ax-8 1528  ax-17 1550  ax-i9 1554
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  fisumcom2  11864  fprodcom2fi  12052  trirec0  16185
  Copyright terms: Public domain W3C validator