| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcoms | Unicode version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 |
|
| Ref | Expression |
|---|---|
| equcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1728 |
. 2
| |
| 2 | equcoms.1 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equtr 1733 equtr2 1735 equequ2 1737 ax10o 1739 cbvalv1 1775 cbvexv1 1776 cbvalh 1777 cbvexh 1779 equvini 1782 stdpc7 1794 sbequ12r 1796 sbequ12a 1797 sbequ 1864 sb6rf 1877 cbvalvw 1944 cbvexvw 1945 sb9v 2007 sb6a 2017 mo2n 2083 elequ1 2181 elequ2 2182 cleqh 2306 cbvab 2330 sbralie 2757 reu8 2973 sbcco2 3025 snnex 4508 tfisi 4648 opeliunxp 4743 elrnmpt1 4943 rnxpid 5131 iotaval 5257 elabrex 5844 elabrexg 5845 opabex3d 6224 opabex3 6225 enq0ref 7576 fproddivapf 12027 setindis 16072 bdsetindis 16074 |
| Copyright terms: Public domain | W3C validator |