![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcoms | Unicode version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
equcoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1715 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | equcoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equtr 1720 equtr2 1722 equequ2 1724 ax10o 1726 cbvalv1 1762 cbvexv1 1763 cbvalh 1764 cbvexh 1766 equvini 1769 stdpc7 1781 sbequ12r 1783 sbequ12a 1784 sbequ 1851 sb6rf 1864 cbvalvw 1931 cbvexvw 1932 sb9v 1994 sb6a 2004 mo2n 2070 elequ1 2168 elequ2 2169 cleqh 2293 cbvab 2317 sbralie 2744 reu8 2957 sbcco2 3009 snnex 4480 tfisi 4620 opeliunxp 4715 elrnmpt1 4914 rnxpid 5101 iotaval 5227 elabrex 5801 elabrexg 5802 opabex3d 6175 opabex3 6176 enq0ref 7495 fproddivapf 11777 setindis 15529 bdsetindis 15531 |
Copyright terms: Public domain | W3C validator |