| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcoms | Unicode version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 |
|
| Ref | Expression |
|---|---|
| equcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1727 |
. 2
| |
| 2 | equcoms.1 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equtr 1732 equtr2 1734 equequ2 1736 ax10o 1738 cbvalv1 1774 cbvexv1 1775 cbvalh 1776 cbvexh 1778 equvini 1781 stdpc7 1793 sbequ12r 1795 sbequ12a 1796 sbequ 1863 sb6rf 1876 cbvalvw 1943 cbvexvw 1944 sb9v 2006 sb6a 2016 mo2n 2082 elequ1 2180 elequ2 2181 cleqh 2305 cbvab 2329 sbralie 2756 reu8 2969 sbcco2 3021 snnex 4495 tfisi 4635 opeliunxp 4730 elrnmpt1 4929 rnxpid 5117 iotaval 5243 elabrex 5826 elabrexg 5827 opabex3d 6206 opabex3 6207 enq0ref 7546 fproddivapf 11942 setindis 15903 bdsetindis 15905 |
| Copyright terms: Public domain | W3C validator |