![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcoms | Unicode version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
equcoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1715 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | equcoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equtr 1720 equtr2 1722 equequ2 1724 ax10o 1726 cbvalv1 1762 cbvexv1 1763 cbvalh 1764 cbvexh 1766 equvini 1769 stdpc7 1781 sbequ12r 1783 sbequ12a 1784 sbequ 1851 sb6rf 1864 cbvalvw 1931 cbvexvw 1932 sb9v 1994 sb6a 2004 mo2n 2070 elequ1 2168 elequ2 2169 cleqh 2293 cbvab 2317 sbralie 2744 reu8 2956 sbcco2 3008 snnex 4479 tfisi 4619 opeliunxp 4714 elrnmpt1 4913 rnxpid 5100 iotaval 5226 elabrex 5800 elabrexg 5801 opabex3d 6173 opabex3 6174 enq0ref 7493 fproddivapf 11774 setindis 15459 bdsetindis 15461 |
Copyright terms: Public domain | W3C validator |