| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcoms | Unicode version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 |
|
| Ref | Expression |
|---|---|
| equcoms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1726 |
. 2
| |
| 2 | equcoms.1 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1471 ax-ie2 1516 ax-8 1526 ax-17 1548 ax-i9 1552 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equtr 1731 equtr2 1733 equequ2 1735 ax10o 1737 cbvalv1 1773 cbvexv1 1774 cbvalh 1775 cbvexh 1777 equvini 1780 stdpc7 1792 sbequ12r 1794 sbequ12a 1795 sbequ 1862 sb6rf 1875 cbvalvw 1942 cbvexvw 1943 sb9v 2005 sb6a 2015 mo2n 2081 elequ1 2179 elequ2 2180 cleqh 2304 cbvab 2328 sbralie 2755 reu8 2968 sbcco2 3020 snnex 4494 tfisi 4634 opeliunxp 4729 elrnmpt1 4928 rnxpid 5116 iotaval 5242 elabrex 5825 elabrexg 5826 opabex3d 6205 opabex3 6206 enq0ref 7545 fproddivapf 11884 setindis 15836 bdsetindis 15838 |
| Copyright terms: Public domain | W3C validator |