Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcomd | GIF version |
Description: Deduction form of equcom 1699, symmetry of equality. For the versions for classes, see eqcom 2172 and eqcomd 2176. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
2 | equcom 1699 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fisumcom2 11401 fprodcom2fi 11589 trirec0 14076 |
Copyright terms: Public domain | W3C validator |