ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcomd GIF version

Theorem equcomd 1700
Description: Deduction form of equcom 1699, symmetry of equality. For the versions for classes, see eqcom 2172 and eqcomd 2176. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 1699 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 121 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-17 1519  ax-i9 1523
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  fisumcom2  11401  fprodcom2fi  11589  trirec0  14076
  Copyright terms: Public domain W3C validator