Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equsalv | GIF version |
Description: An equivalence related to implicit substitution. Version of equsal 1715 with a disjoint variable condition. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
equsalv.nf | ⊢ Ⅎ𝑥𝜓 |
equsalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsalv | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalv.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 1666 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
3 | equsalv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | pm5.74i 179 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
5 | 4 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
6 | a9ev 1685 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
7 | 6 | a1bi 242 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
8 | 2, 5, 7 | 3bitr4i 211 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfabdw 2327 |
Copyright terms: Public domain | W3C validator |