| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsalv | GIF version | ||
| Description: An equivalence related to implicit substitution. Version of equsal 1741 with a disjoint variable condition. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| equsalv.nf | ⊢ Ⅎ𝑥𝜓 |
| equsalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalv | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalv.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 1692 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 3 | equsalv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | pm5.74i 180 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 5 | 4 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 6 | a9ev 1711 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 7 | 6 | a1bi 243 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 8 | 2, 5, 7 | 3bitr4i 212 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfabdw 2358 |
| Copyright terms: Public domain | W3C validator |