ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb2 Unicode version

Theorem equsb2 1809
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb2  |-  [ y  /  x ] y  =  x

Proof of Theorem equsb2
StepHypRef Expression
1 sb2 1790 . 2  |-  ( A. x ( x  =  y  ->  y  =  x )  ->  [ y  /  x ] y  =  x )
2 equcomi 1727 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2mpg 1474 1  |-  [ y  /  x ] y  =  x
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  sbco  1996
  Copyright terms: Public domain W3C validator