| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsb2 | GIF version | ||
| Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equsb2 | ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb2 1791 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑦 = 𝑥) → [𝑦 / 𝑥]𝑦 = 𝑥) | |
| 2 | equcomi 1728 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: sbco 1997 |
| Copyright terms: Public domain | W3C validator |