| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equsb2 | GIF version | ||
| Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| equsb2 | ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb2 1781 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑦 = 𝑥) → [𝑦 / 𝑥]𝑦 = 𝑥) | |
| 2 | equcomi 1718 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 3 | 1, 2 | mpg 1465 | 1 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbco 1987 | 
| Copyright terms: Public domain | W3C validator |