Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equsb3lem | Unicode version |
Description: Lemma for equsb3 1949. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
equsb3lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1524 | . 2 | |
2 | equequ1 1710 | . 2 | |
3 | 1, 2 | sbieh 1788 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-sb 1761 |
This theorem is referenced by: equsb3 1949 |
Copyright terms: Public domain | W3C validator |