ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3lem Unicode version

Theorem equsb3lem 1948
Description: Lemma for equsb3 1949. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
Distinct variable groups:    x, z    x, y

Proof of Theorem equsb3lem
StepHypRef Expression
1 ax-17 1524 . 2  |-  ( y  =  z  ->  A. x  y  =  z )
2 equequ1 1710 . 2  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
31, 2sbieh 1788 1  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   [wsb 1760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-sb 1761
This theorem is referenced by:  equsb3  1949
  Copyright terms: Public domain W3C validator