| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1526 |
. 2
| |
| 2 | equtr 1731 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 ax-ie2 1516 ax-8 1526 ax-17 1548 ax-i9 1552 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1781 drsb1 1821 equsb3lem 1977 euequ1 2148 axext3 2187 cbvreuvw 2743 reu6 2961 reu7 2967 disjiun 4038 cbviota 5236 dff13f 5838 poxp 6317 dcdifsnid 6589 supmoti 7094 isoti 7108 nninfwlpoim 7280 exmidontriimlem3 7334 exmidontriim 7336 netap 7365 fsum2dlemstep 11687 ennnfonelemr 12736 ctinf 12743 reap0 15930 |
| Copyright terms: Public domain | W3C validator |