ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ1 Unicode version

Theorem equequ1 1734
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ1  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )

Proof of Theorem equequ1
StepHypRef Expression
1 ax-8 1526 . 2  |-  ( x  =  y  ->  (
x  =  z  -> 
y  =  z ) )
2 equtr 1731 . 2  |-  ( x  =  y  ->  (
y  =  z  ->  x  =  z )
)
31, 2impbid 129 1  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1471  ax-ie2 1516  ax-8 1526  ax-17 1548  ax-i9 1552
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equveli  1781  drsb1  1821  equsb3lem  1977  euequ1  2148  axext3  2187  cbvreuvw  2743  reu6  2961  reu7  2967  disjiun  4038  cbviota  5236  dff13f  5838  poxp  6317  dcdifsnid  6589  supmoti  7094  isoti  7108  nninfwlpoim  7280  exmidontriimlem3  7334  exmidontriim  7336  netap  7365  fsum2dlemstep  11687  ennnfonelemr  12736  ctinf  12743  reap0  15930
  Copyright terms: Public domain W3C validator