| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1527 |
. 2
| |
| 2 | equtr 1732 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1782 drsb1 1822 equsb3lem 1978 euequ1 2149 axext3 2188 cbvreuvw 2744 reu6 2962 reu7 2968 disjiun 4039 cbviota 5237 dff13f 5839 poxp 6318 dcdifsnid 6590 supmoti 7095 isoti 7109 nninfwlpoim 7281 exmidontriimlem3 7335 exmidontriim 7337 netap 7366 fsum2dlemstep 11745 ennnfonelemr 12794 ctinf 12801 reap0 15997 |
| Copyright terms: Public domain | W3C validator |