ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ1 Unicode version

Theorem equequ1 1735
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ1  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )

Proof of Theorem equequ1
StepHypRef Expression
1 ax-8 1527 . 2  |-  ( x  =  y  ->  (
x  =  z  -> 
y  =  z ) )
2 equtr 1732 . 2  |-  ( x  =  y  ->  (
y  =  z  ->  x  =  z )
)
31, 2impbid 129 1  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472  ax-ie2 1517  ax-8 1527  ax-17 1549  ax-i9 1553
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equveli  1782  drsb1  1822  equsb3lem  1978  euequ1  2149  axext3  2188  cbvreuvw  2744  reu6  2962  reu7  2968  disjiun  4039  cbviota  5237  dff13f  5839  poxp  6318  dcdifsnid  6590  supmoti  7095  isoti  7109  nninfwlpoim  7281  exmidontriimlem3  7335  exmidontriim  7337  netap  7366  fsum2dlemstep  11745  ennnfonelemr  12794  ctinf  12801  reap0  15997
  Copyright terms: Public domain W3C validator