| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1550 |
. 2
| |
| 2 | equtr 1755 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1805 drsb1 1845 equsb3lem 2001 euequ1 2173 axext3 2212 cbvreuvw 2771 reu6 2992 reu7 2998 reu8nf 3110 disjiun 4077 cbviota 5282 dff13f 5893 poxp 6376 dcdifsnid 6648 supmoti 7156 isoti 7170 nninfwlpoim 7342 exmidontriimlem3 7401 exmidontriim 7403 netap 7436 fsum2dlemstep 11940 ennnfonelemr 12989 ctinf 12996 reap0 16385 |
| Copyright terms: Public domain | W3C validator |