Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equequ1 | Unicode version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-8 1497 | . 2 | |
2 | equtr 1702 | . 2 | |
3 | 1, 2 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equveli 1752 drsb1 1792 equsb3lem 1943 euequ1 2114 axext3 2153 cbvreuvw 2702 reu6 2919 reu7 2925 disjiun 3982 cbviota 5163 dff13f 5747 poxp 6209 dcdifsnid 6481 supmoti 6968 isoti 6982 exmidontriimlem3 7193 exmidontriim 7195 fsum2dlemstep 11390 ennnfonelemr 12371 ctinf 12378 reap0 14055 |
Copyright terms: Public domain | W3C validator |