| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1528 |
. 2
| |
| 2 | equtr 1733 |
. 2
| |
| 3 | 1, 2 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equveli 1783 drsb1 1823 equsb3lem 1979 euequ1 2151 axext3 2190 cbvreuvw 2748 reu6 2969 reu7 2975 reu8nf 3087 disjiun 4054 cbviota 5256 dff13f 5862 poxp 6341 dcdifsnid 6613 supmoti 7121 isoti 7135 nninfwlpoim 7307 exmidontriimlem3 7366 exmidontriim 7368 netap 7401 fsum2dlemstep 11860 ennnfonelemr 12909 ctinf 12916 reap0 16199 |
| Copyright terms: Public domain | W3C validator |