Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsb | Unicode version |
Description: If is not free in , it is not free in when and are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.) |
Ref | Expression |
---|---|
hbsb.1 |
Ref | Expression |
---|---|
hbsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb.1 | . . . 4 | |
2 | 1 | nfi 1455 | . . 3 |
3 | 2 | nfsb 1939 | . 2 |
4 | 3 | nfri 1512 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sb10f 1988 hbsb4 2005 sb8euh 2042 hbab 2161 hblem 2278 |
Copyright terms: Public domain | W3C validator |