ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb Unicode version

Theorem hbsb 1949
Description: If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Hypothesis
Ref Expression
hbsb.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
hbsb  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4  |-  ( ph  ->  A. z ph )
21nfi 1462 . . 3  |-  F/ z
ph
32nfsb 1946 . 2  |-  F/ z [ y  /  x ] ph
43nfri 1519 1  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  sb10f  1995  hbsb4  2012  sb8euh  2049  hbab  2168  hblem  2285
  Copyright terms: Public domain W3C validator