ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb Unicode version

Theorem hbsb 1978
Description: If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Hypothesis
Ref Expression
hbsb.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
hbsb  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4  |-  ( ph  ->  A. z ph )
21nfi 1486 . . 3  |-  F/ z
ph
32nfsb 1975 . 2  |-  F/ z [ y  /  x ] ph
43nfri 1543 1  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sb10f  2024  hbsb4  2041  sb8euh  2078  hbab  2198  hblem  2315
  Copyright terms: Public domain W3C validator