ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3 Unicode version

Theorem equsb3 1880
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
Assertion
Ref Expression
equsb3  |-  ( [ x  /  y ] y  =  z  <->  x  =  z )
Distinct variable group:    y, z

Proof of Theorem equsb3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 equsb3lem 1879 . . 3  |-  ( [ w  /  y ] y  =  z  <->  w  =  z )
21sbbii 1702 . 2  |-  ( [ x  /  w ] [ w  /  y ] y  =  z  <->  [ x  /  w ] w  =  z
)
3 ax-17 1471 . . 3  |-  ( y  =  z  ->  A. w  y  =  z )
43sbco2v 1876 . 2  |-  ( [ x  /  w ] [ w  /  y ] y  =  z  <->  [ x  /  y ] y  =  z )
5 equsb3lem 1879 . 2  |-  ( [ x  /  w ]
w  =  z  <->  x  =  z )
62, 4, 53bitr3i 209 1  |-  ( [ x  /  y ] y  =  z  <->  x  =  z )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1699
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480
This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700
This theorem is referenced by:  sb8eu  1968  sb8euh  1978  sb8iota  5021
  Copyright terms: Public domain W3C validator