ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3lem GIF version

Theorem equsb3lem 1962
Description: Lemma for equsb3 1963. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Distinct variable groups:   𝑥,𝑧   𝑥,𝑦

Proof of Theorem equsb3lem
StepHypRef Expression
1 ax-17 1537 . 2 (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)
2 equequ1 1723 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
31, 2sbieh 1801 1 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by:  equsb3  1963
  Copyright terms: Public domain W3C validator