ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3lem GIF version

Theorem equsb3lem 1930
Description: Lemma for equsb3 1931. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Distinct variable groups:   𝑥,𝑧   𝑥,𝑦

Proof of Theorem equsb3lem
StepHypRef Expression
1 ax-17 1506 . 2 (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)
2 equequ1 1692 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
31, 2sbieh 1770 1 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1335  [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-sb 1743
This theorem is referenced by:  equsb3  1931
  Copyright terms: Public domain W3C validator