ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu1 Unicode version

Theorem eu1 2051
Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
Hypothesis
Ref Expression
eu1.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
eu1  |-  ( E! x ph  <->  E. x
( ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eu1
StepHypRef Expression
1 hbs1 1938 . . 3  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
21euf 2031 . 2  |-  ( E! y [ y  /  x ] ph  <->  E. x A. y ( [ y  /  x ] ph  <->  y  =  x ) )
3 eu1.1 . . 3  |-  ( ph  ->  A. y ph )
43sb8euh 2049 . 2  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
5 equcom 1706 . . . . . . 7  |-  ( x  =  y  <->  y  =  x )
65imbi2i 226 . . . . . 6  |-  ( ( [ y  /  x ] ph  ->  x  =  y )  <->  ( [
y  /  x ] ph  ->  y  =  x ) )
76albii 1470 . . . . 5  |-  ( A. y ( [ y  /  x ] ph  ->  x  =  y )  <->  A. y ( [ y  /  x ] ph  ->  y  =  x ) )
83sb6rf 1853 . . . . 5  |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
)
97, 8anbi12i 460 . . . 4  |-  ( ( A. y ( [ y  /  x ] ph  ->  x  =  y )  /\  ph )  <->  ( A. y ( [ y  /  x ] ph  ->  y  =  x )  /\  A. y
( y  =  x  ->  [ y  /  x ] ph ) ) )
10 ancom 266 . . . 4  |-  ( (
ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) )  <-> 
( A. y ( [ y  /  x ] ph  ->  x  =  y )  /\  ph ) )
11 albiim 1487 . . . 4  |-  ( A. y ( [ y  /  x ] ph  <->  y  =  x )  <->  ( A. y ( [ y  /  x ] ph  ->  y  =  x )  /\  A. y ( y  =  x  ->  [ y  /  x ] ph ) ) )
129, 10, 113bitr4i 212 . . 3  |-  ( (
ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) )  <->  A. y ( [ y  /  x ] ph  <->  y  =  x ) )
1312exbii 1605 . 2  |-  ( E. x ( ph  /\  A. y ( [ y  /  x ] ph  ->  x  =  y ) )  <->  E. x A. y
( [ y  /  x ] ph  <->  y  =  x ) )
142, 4, 133bitr4i 212 1  |-  ( E! x ph  <->  E. x
( ph  /\  A. y
( [ y  /  x ] ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351   E.wex 1492   [wsb 1762   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029
This theorem is referenced by:  euex  2056  eu2  2070
  Copyright terms: Public domain W3C validator