Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbid | Unicode version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exbid.1 | |
exbid.2 |
Ref | Expression |
---|---|
exbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbid.1 | . . 3 | |
2 | 1 | nfri 1507 | . 2 |
3 | exbid.2 | . 2 | |
4 | 2, 3 | exbidh 1602 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wnf 1448 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: mobid 2049 rexbida 2461 rexbid2 2471 rexeqf 2658 opabbid 4047 repizf2 4141 oprabbid 5895 |
Copyright terms: Public domain | W3C validator |