Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbid | Unicode version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exbid.1 | |
exbid.2 |
Ref | Expression |
---|---|
exbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbid.1 | . . 3 | |
2 | 1 | nfri 1517 | . 2 |
3 | exbid.2 | . 2 | |
4 | 2, 3 | exbidh 1612 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wnf 1458 wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 |
This theorem is referenced by: mobid 2059 rexbida 2470 rexbid2 2480 rexeqf 2667 opabbid 4063 repizf2 4157 oprabbid 5918 |
Copyright terms: Public domain | W3C validator |