ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbid Unicode version

Theorem exbid 1614
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
exbid.1  |-  F/ x ph
exbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
exbid  |-  ( ph  ->  ( E. x ps  <->  E. x ch ) )

Proof of Theorem exbid
StepHypRef Expression
1 exbid.1 . . 3  |-  F/ x ph
21nfri 1517 . 2  |-  ( ph  ->  A. x ph )
3 exbid.2 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
42, 3exbidh 1612 1  |-  ( ph  ->  ( E. x ps  <->  E. x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1458   E.wex 1490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by:  mobid  2059  rexbida  2470  rexbid2  2480  rexeqf  2667  opabbid  4063  repizf2  4157  oprabbid  5918
  Copyright terms: Public domain W3C validator