ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpl Unicode version

Theorem exsimpl 1553
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 107 . 2  |-  ( (
ph  /\  ps )  ->  ph )
21eximi 1536 1  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.40  1567  euex  1978  moexexdc  2032  elex  2630  sbc5  2863  dmcoss  4702  fmptco  5464  brabvv  5695  brtpos2  6016
  Copyright terms: Public domain W3C validator