ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpl Unicode version

Theorem exsimpl 1631
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 109 . 2  |-  ( (
ph  /\  ps )  ->  ph )
21eximi 1614 1  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.40  1645  euex  2075  moexexdc  2129  elex  2774  sbc5  3013  dmcoss  4935  fmptco  5728  brabvv  5968  brtpos2  6309
  Copyright terms: Public domain W3C validator