| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exsimpl | Unicode version | ||
| Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| exsimpl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | eximi 1624 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.40 1655 euex 2085 moexexdc 2140 elex 2788 sbc5 3029 dmcoss 4967 fmptco 5769 brabvv 6014 brtpos2 6360 |
| Copyright terms: Public domain | W3C validator |