ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpl Unicode version

Theorem exsimpl 1663
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 109 . 2  |-  ( (
ph  /\  ps )  ->  ph )
21eximi 1646 1  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.40  1677  euex  2107  moexexdc  2162  elex  2811  sbc5  3052  dmcoss  4994  fmptco  5801  brabvv  6050  brtpos2  6397
  Copyright terms: Public domain W3C validator