| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqf | Unicode version | ||
| Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| raleq1f.1 |
|
| raleq1f.2 |
|
| Ref | Expression |
|---|---|
| rexeqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1f.1 |
. . . 4
| |
| 2 | raleq1f.2 |
. . . 4
| |
| 3 | 1, 2 | nfeq 2347 |
. . 3
|
| 4 | eleq2 2260 |
. . . 4
| |
| 5 | 4 | anbi1d 465 |
. . 3
|
| 6 | 3, 5 | exbid 1630 |
. 2
|
| 7 | df-rex 2481 |
. 2
| |
| 8 | df-rex 2481 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: rexeq 2694 |
| Copyright terms: Public domain | W3C validator |