ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2 Unicode version

Theorem repizf2 4164
Description: Replacement. This version of replacement is stronger than repizf 4121 in the sense that  ph does not need to map all values of  x in  w to a value of  y. The resulting set contains those elements for which there is a value of  y and in that sense, this theorem combines repizf 4121 with ax-sep 4123. Another variation would be  A. x  e.  w E* y ph  ->  { y  |  E. x ( x  e.  w  /\  ph ) }  e.  _V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
Hypothesis
Ref Expression
repizf2.1  |-  F/ z
ph
Assertion
Ref Expression
repizf2  |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
Distinct variable group:    x, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem repizf2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . 3  |-  w  e. 
_V
21rabex 4149 . 2  |-  { x  e.  w  |  E. y ph }  e.  _V
3 repizf2lem 4163 . . . 4  |-  ( A. x  e.  w  E* y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph )
4 nfcv 2319 . . . . . 6  |-  F/_ x
v
5 nfrab1 2657 . . . . . 6  |-  F/_ x { x  e.  w  |  E. y ph }
64, 5raleqf 2669 . . . . 5  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  v  E! y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph ) )
7 repizf2.1 . . . . . 6  |-  F/ z
ph
87repizf 4121 . . . . 5  |-  ( A. x  e.  v  E! y ph  ->  E. z A. x  e.  v  E. y  e.  z  ph )
96, 8syl6bir 164 . . . 4  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  { x  e.  w  |  E. y ph } E! y
ph  ->  E. z A. x  e.  v  E. y  e.  z  ph ) )
103, 9biimtrid 152 . . 3  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  v  E. y  e.  z  ph ) )
11 df-rab 2464 . . . . . 6  |-  { x  e.  w  |  E. y ph }  =  {
x  |  ( x  e.  w  /\  E. y ph ) }
12 nfv 1528 . . . . . . . 8  |-  F/ z  x  e.  w
137nfex 1637 . . . . . . . 8  |-  F/ z E. y ph
1412, 13nfan 1565 . . . . . . 7  |-  F/ z ( x  e.  w  /\  E. y ph )
1514nfab 2324 . . . . . 6  |-  F/_ z { x  |  (
x  e.  w  /\  E. y ph ) }
1611, 15nfcxfr 2316 . . . . 5  |-  F/_ z { x  e.  w  |  E. y ph }
1716nfeq2 2331 . . . 4  |-  F/ z  v  =  { x  e.  w  |  E. y ph }
184, 5raleqf 2669 . . . 4  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  v  E. y  e.  z  ph  <->  A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
1917, 18exbid 1616 . . 3  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( E. z A. x  e.  v  E. y  e.  z 
ph 
<->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
2010, 19sylibd 149 . 2  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
212, 20vtocle 2813 1  |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   F/wnf 1460   E.wex 1492   E!weu 2026   E*wmo 2027   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-coll 4120  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator