Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > repizf2 | Unicode version |
Description: Replacement. This version of replacement is stronger than repizf 4098 in the sense that does not need to map all values of in to a value of . The resulting set contains those elements for which there is a value of and in that sense, this theorem combines repizf 4098 with ax-sep 4100. Another variation would be but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.) |
Ref | Expression |
---|---|
repizf2.1 |
Ref | Expression |
---|---|
repizf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . 3 | |
2 | 1 | rabex 4126 | . 2 |
3 | repizf2lem 4140 | . . . 4 | |
4 | nfcv 2308 | . . . . . 6 | |
5 | nfrab1 2645 | . . . . . 6 | |
6 | 4, 5 | raleqf 2657 | . . . . 5 |
7 | repizf2.1 | . . . . . 6 | |
8 | 7 | repizf 4098 | . . . . 5 |
9 | 6, 8 | syl6bir 163 | . . . 4 |
10 | 3, 9 | syl5bi 151 | . . 3 |
11 | df-rab 2453 | . . . . . 6 | |
12 | nfv 1516 | . . . . . . . 8 | |
13 | 7 | nfex 1625 | . . . . . . . 8 |
14 | 12, 13 | nfan 1553 | . . . . . . 7 |
15 | 14 | nfab 2313 | . . . . . 6 |
16 | 11, 15 | nfcxfr 2305 | . . . . 5 |
17 | 16 | nfeq2 2320 | . . . 4 |
18 | 4, 5 | raleqf 2657 | . . . 4 |
19 | 17, 18 | exbid 1604 | . . 3 |
20 | 10, 19 | sylibd 148 | . 2 |
21 | 2, 20 | vtocle 2800 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wnf 1448 wex 1480 weu 2014 wmo 2015 cab 2151 wral 2444 wrex 2445 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-coll 4097 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |