| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > repizf2 | Unicode version | ||
| Description: Replacement. This
version of replacement is stronger than repizf 4200 in
the sense that |
| Ref | Expression |
|---|---|
| repizf2.1 |
|
| Ref | Expression |
|---|---|
| repizf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . 3
| |
| 2 | 1 | rabex 4228 |
. 2
|
| 3 | repizf2lem 4245 |
. . . 4
| |
| 4 | nfcv 2372 |
. . . . . 6
| |
| 5 | nfrab1 2711 |
. . . . . 6
| |
| 6 | 4, 5 | raleqf 2724 |
. . . . 5
|
| 7 | repizf2.1 |
. . . . . 6
| |
| 8 | 7 | repizf 4200 |
. . . . 5
|
| 9 | 6, 8 | biimtrrdi 164 |
. . . 4
|
| 10 | 3, 9 | biimtrid 152 |
. . 3
|
| 11 | df-rab 2517 |
. . . . . 6
| |
| 12 | nfv 1574 |
. . . . . . . 8
| |
| 13 | 7 | nfex 1683 |
. . . . . . . 8
|
| 14 | 12, 13 | nfan 1611 |
. . . . . . 7
|
| 15 | 14 | nfab 2377 |
. . . . . 6
|
| 16 | 11, 15 | nfcxfr 2369 |
. . . . 5
|
| 17 | 16 | nfeq2 2384 |
. . . 4
|
| 18 | 4, 5 | raleqf 2724 |
. . . 4
|
| 19 | 17, 18 | exbid 1662 |
. . 3
|
| 20 | 10, 19 | sylibd 149 |
. 2
|
| 21 | 2, 20 | vtocle 2877 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-coll 4199 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |