ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbida Unicode version

Theorem rexbida 2485
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
ralbida.1  |-  F/ x ph
ralbida.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rexbida  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)

Proof of Theorem rexbida
StepHypRef Expression
1 ralbida.1 . . 3  |-  F/ x ph
2 ralbida.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
32pm5.32da 452 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
41, 3exbid 1627 . 2  |-  ( ph  ->  ( E. x ( x  e.  A  /\  ps )  <->  E. x ( x  e.  A  /\  ch ) ) )
5 df-rex 2474 . 2  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
6 df-rex 2474 . 2  |-  ( E. x  e.  A  ch  <->  E. x ( x  e.  A  /\  ch )
)
74, 5, 63bitr4g 223 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1471   E.wex 1503    e. wcel 2160   E.wrex 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-rex 2474
This theorem is referenced by:  rexbidva  2487  rexbid  2489  rexbi  2623  dfiun2g  3933  fun11iun  5501  ismkvnex  7183  mkvprop  7186
  Copyright terms: Public domain W3C validator