ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbid Unicode version

Theorem oprabbid 5904
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
oprabbid.1  |-  F/ x ph
oprabbid.2  |-  F/ y
ph
oprabbid.3  |-  F/ z
ph
oprabbid.4  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
oprabbid  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    ch( x, y, z)

Proof of Theorem oprabbid
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 oprabbid.1 . . . 4  |-  F/ x ph
2 oprabbid.2 . . . . 5  |-  F/ y
ph
3 oprabbid.3 . . . . . 6  |-  F/ z
ph
4 oprabbid.4 . . . . . . 7  |-  ( ph  ->  ( ps  <->  ch )
)
54anbi2d 461 . . . . . 6  |-  ( ph  ->  ( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps )  <->  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ch ) ) )
63, 5exbid 1609 . . . . 5  |-  ( ph  ->  ( E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ps )  <->  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ch ) ) )
72, 6exbid 1609 . . . 4  |-  ( ph  ->  ( E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps )  <->  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ch ) ) )
81, 7exbid 1609 . . 3  |-  ( ph  ->  ( E. x E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ps )  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ch ) ) )
98abbidv 2288 . 2  |-  ( ph  ->  { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ps ) }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ch ) } )
10 df-oprab 5855 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ps ) }
11 df-oprab 5855 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ch }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ch ) }
129, 10, 113eqtr4g 2228 1  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   F/wnf 1453   E.wex 1485   {cab 2156   <.cop 3584   {coprab 5852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-oprab 5855
This theorem is referenced by:  oprabbidv  5905  mpoeq123  5910
  Copyright terms: Public domain W3C validator