| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opabbid | Unicode version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| opabbid.1 | 
 | 
| opabbid.2 | 
 | 
| opabbid.3 | 
 | 
| Ref | Expression | 
|---|---|
| opabbid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opabbid.1 | 
. . . 4
 | |
| 2 | opabbid.2 | 
. . . . 5
 | |
| 3 | opabbid.3 | 
. . . . . 6
 | |
| 4 | 3 | anbi2d 464 | 
. . . . 5
 | 
| 5 | 2, 4 | exbid 1630 | 
. . . 4
 | 
| 6 | 1, 5 | exbid 1630 | 
. . 3
 | 
| 7 | 6 | abbidv 2314 | 
. 2
 | 
| 8 | df-opab 4095 | 
. 2
 | |
| 9 | df-opab 4095 | 
. 2
 | |
| 10 | 7, 8, 9 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-opab 4095 | 
| This theorem is referenced by: opabbidv 4099 mpteq12f 4113 fnoprabg 6023 | 
| Copyright terms: Public domain | W3C validator |