ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbid Unicode version

Theorem opabbid 4125
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Hypotheses
Ref Expression
opabbid.1  |-  F/ x ph
opabbid.2  |-  F/ y
ph
opabbid.3  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
opabbid  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  =  { <. x ,  y
>.  |  ch } )

Proof of Theorem opabbid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opabbid.1 . . . 4  |-  F/ x ph
2 opabbid.2 . . . . 5  |-  F/ y
ph
3 opabbid.3 . . . . . 6  |-  ( ph  ->  ( ps  <->  ch )
)
43anbi2d 464 . . . . 5  |-  ( ph  ->  ( ( z  = 
<. x ,  y >.  /\  ps )  <->  ( z  =  <. x ,  y
>.  /\  ch ) ) )
52, 4exbid 1640 . . . 4  |-  ( ph  ->  ( E. y ( z  =  <. x ,  y >.  /\  ps ) 
<->  E. y ( z  =  <. x ,  y
>.  /\  ch ) ) )
61, 5exbid 1640 . . 3  |-  ( ph  ->  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ps )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ch ) ) )
76abbidv 2325 . 2  |-  ( ph  ->  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ps ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ch ) } )
8 df-opab 4122 . 2  |-  { <. x ,  y >.  |  ps }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) }
9 df-opab 4122 . 2  |-  { <. x ,  y >.  |  ch }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ch ) }
107, 8, 93eqtr4g 2265 1  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  =  { <. x ,  y
>.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1484   E.wex 1516   {cab 2193   <.cop 3646   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-opab 4122
This theorem is referenced by:  opabbidv  4126  mpteq12f  4140  fnoprabg  6069
  Copyright terms: Public domain W3C validator