ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  excomim Unicode version

Theorem excomim 1677
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
excomim  |-  ( E. x E. y ph  ->  E. y E. x ph )

Proof of Theorem excomim
StepHypRef Expression
1 19.8a 1604 . . 3  |-  ( ph  ->  E. x ph )
212eximi 1615 . 2  |-  ( E. x E. y ph  ->  E. x E. y E. x ph )
3 hbe1 1509 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
43hbex 1650 . . 3  |-  ( E. y E. x ph  ->  A. x E. y E. x ph )
5419.9h 1657 . 2  |-  ( E. x E. y E. x ph  <->  E. y E. x ph )
62, 5sylib 122 1  |-  ( E. x E. y ph  ->  E. y E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excom  1678  2euswapdc  2136
  Copyright terms: Public domain W3C validator