ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  excom Unicode version

Theorem excom 1675
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
excom  |-  ( E. x E. y ph  <->  E. y E. x ph )

Proof of Theorem excom
StepHypRef Expression
1 excomim 1674 . 2  |-  ( E. x E. y ph  ->  E. y E. x ph )
2 excomim 1674 . 2  |-  ( E. y E. x ph  ->  E. x E. y ph )
31, 2impbii 126 1  |-  ( E. x E. y ph  <->  E. y E. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excom13  1700  exrot3  1701  ee4anv  1950  sbexyz  2019  2exsb  2025  2euex  2129  2exeu  2134  2eu4  2135  rexcomf  2656  gencbvex  2806  euxfr2dc  2945  euind  2947  sbccomlem  3060  opelopabsbALT  4289  uniuni  4482  elvvv  4722  elco  4828  dmuni  4872  dm0rn0  4879  dmmrnm  4881  dmcosseq  4933  elres  4978  rnco  5172  coass  5184  oprabid  5950  dfoprab2  5965  opabex3d  6173  opabex3  6174  cnvoprab  6287  domen  6805  xpassen  6884  prarloc  7563  fisumcom2  11581  fprodcom2fi  11769
  Copyright terms: Public domain W3C validator