![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2eximi | Unicode version |
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2eximi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eximi 1611 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | eximi 1611 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: excomim 1674 cgsex2g 2796 cgsex4g 2797 vtocl2 2816 vtocl3 2817 dtruarb 4221 opelopabsb 4291 mosubopt 4725 xpmlem 5087 brabvv 5965 ssoprab2i 6008 dmaddpqlem 7439 nqpi 7440 dmaddpq 7441 dmmulpq 7442 enq0sym 7494 enq0ref 7495 enq0tr 7496 nq0nn 7504 prarloc 7565 bj-inex 15469 |
Copyright terms: Public domain | W3C validator |