![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2eximi | Unicode version |
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2eximi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eximi 1536 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | eximi 1536 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: excomim 1598 cgsex2g 2655 cgsex4g 2656 vtocl2 2674 vtocl3 2675 dtruarb 4024 opelopabsb 4085 mosubopt 4499 xpmlem 4847 brabvv 5687 ssoprab2i 5729 dmaddpqlem 6926 nqpi 6927 dmaddpq 6928 dmmulpq 6929 enq0sym 6981 enq0ref 6982 enq0tr 6983 nq0nn 6991 prarloc 7052 bj-inex 11681 |
Copyright terms: Public domain | W3C validator |