ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximi Unicode version

Theorem 2eximi 1612
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
2eximi  |-  ( E. x E. y ph  ->  E. x E. y ps )

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3  |-  ( ph  ->  ps )
21eximi 1611 . 2  |-  ( E. y ph  ->  E. y ps )
32eximi 1611 1  |-  ( E. x E. y ph  ->  E. x E. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excomim  1674  cgsex2g  2796  cgsex4g  2797  vtocl2  2815  vtocl3  2816  dtruarb  4220  opelopabsb  4290  mosubopt  4724  xpmlem  5086  brabvv  5964  ssoprab2i  6007  dmaddpqlem  7437  nqpi  7438  dmaddpq  7439  dmmulpq  7440  enq0sym  7492  enq0ref  7493  enq0tr  7494  nq0nn  7502  prarloc  7563  bj-inex  15399
  Copyright terms: Public domain W3C validator