| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2eximi | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| eximi.1 | 
 | 
| Ref | Expression | 
|---|---|
| 2eximi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eximi.1 | 
. . 3
 | |
| 2 | 1 | eximi 1614 | 
. 2
 | 
| 3 | 2 | eximi 1614 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: excomim 1677 cgsex2g 2799 cgsex4g 2800 vtocl2 2819 vtocl3 2820 dtruarb 4224 opelopabsb 4294 mosubopt 4728 xpmlem 5090 brabvv 5968 ssoprab2i 6011 dmaddpqlem 7444 nqpi 7445 dmaddpq 7446 dmmulpq 7447 enq0sym 7499 enq0ref 7500 enq0tr 7501 nq0nn 7509 prarloc 7570 bj-inex 15553 | 
| Copyright terms: Public domain | W3C validator |