ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximi Unicode version

Theorem 2eximi 1589
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
2eximi  |-  ( E. x E. y ph  ->  E. x E. y ps )

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3  |-  ( ph  ->  ps )
21eximi 1588 . 2  |-  ( E. y ph  ->  E. y ps )
32eximi 1588 1  |-  ( E. x E. y ph  ->  E. x E. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  excomim  1651  cgsex2g  2762  cgsex4g  2763  vtocl2  2781  vtocl3  2782  dtruarb  4170  opelopabsb  4238  mosubopt  4669  xpmlem  5024  brabvv  5888  ssoprab2i  5931  dmaddpqlem  7318  nqpi  7319  dmaddpq  7320  dmmulpq  7321  enq0sym  7373  enq0ref  7374  enq0tr  7375  nq0nn  7383  prarloc  7444  bj-inex  13789
  Copyright terms: Public domain W3C validator