Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > excomim | GIF version |
Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
excomim | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1578 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | 1 | 2eximi 1589 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦∃𝑥𝜑) |
3 | hbe1 1483 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
4 | 3 | hbex 1624 | . . 3 ⊢ (∃𝑦∃𝑥𝜑 → ∀𝑥∃𝑦∃𝑥𝜑) |
5 | 4 | 19.9h 1631 | . 2 ⊢ (∃𝑥∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑥𝜑) |
6 | 2, 5 | sylib 121 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: excom 1652 2euswapdc 2105 |
Copyright terms: Public domain | W3C validator |