| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > excomim | GIF version | ||
| Description: One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| excomim | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 1616 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | 1 | 2eximi 1627 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦∃𝑥𝜑) |
| 3 | hbe1 1521 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 4 | 3 | hbex 1662 | . . 3 ⊢ (∃𝑦∃𝑥𝜑 → ∀𝑥∃𝑦∃𝑥𝜑) |
| 5 | 4 | 19.9h 1669 | . 2 ⊢ (∃𝑥∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| 6 | 2, 5 | sylib 122 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: excom 1690 2euswapdc 2149 |
| Copyright terms: Public domain | W3C validator |