ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinj Unicode version

Theorem djuinj 7083
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djuinj.r  |-  ( ph  ->  Fun  `' R )
djuinj.s  |-  ( ph  ->  Fun  `' S )
djuinj.disj  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
Assertion
Ref Expression
djuinj  |-  ( ph  ->  Fun  `' ( R ⊔d  S ) )

Proof of Theorem djuinj
StepHypRef Expression
1 inlresf1 7038 . . . . . . 7  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R A )
2 f1fun 5406 . . . . . . 7  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R A )  ->  Fun  (inl  |`  dom  R ) )
31, 2ax-mp 5 . . . . . 6  |-  Fun  (inl  |` 
dom  R )
4 funcnvcnv 5257 . . . . . 6  |-  ( Fun  (inl  |`  dom  R )  ->  Fun  `' `' (inl  |`  dom  R ) )
53, 4ax-mp 5 . . . . 5  |-  Fun  `' `' (inl  |`  dom  R
)
6 djuinj.r . . . . 5  |-  ( ph  ->  Fun  `' R )
7 funco 5238 . . . . 5  |-  ( ( Fun  `' `' (inl  |`  dom  R )  /\  Fun  `' R )  ->  Fun  ( `' `' (inl  |`  dom  R
)  o.  `' R
) )
85, 6, 7sylancr 412 . . . 4  |-  ( ph  ->  Fun  ( `' `' (inl  |`  dom  R )  o.  `' R ) )
9 cnvco 4796 . . . . 5  |-  `' ( R  o.  `' (inl  |`  dom  R ) )  =  ( `' `' (inl  |`  dom  R )  o.  `' R )
109funeqi 5219 . . . 4  |-  ( Fun  `' ( R  o.  `' (inl  |`  dom  R
) )  <->  Fun  ( `' `' (inl  |`  dom  R
)  o.  `' R
) )
118, 10sylibr 133 . . 3  |-  ( ph  ->  Fun  `' ( R  o.  `' (inl  |`  dom  R
) ) )
12 inrresf1 7039 . . . . . . 7  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( A dom  S )
13 f1fun 5406 . . . . . . 7  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( A dom  S )  ->  Fun  (inr  |`  dom  S ) )
1412, 13ax-mp 5 . . . . . 6  |-  Fun  (inr  |` 
dom  S )
15 funcnvcnv 5257 . . . . . 6  |-  ( Fun  (inr  |`  dom  S )  ->  Fun  `' `' (inr  |`  dom  S ) )
1614, 15ax-mp 5 . . . . 5  |-  Fun  `' `' (inr  |`  dom  S
)
17 djuinj.s . . . . 5  |-  ( ph  ->  Fun  `' S )
18 funco 5238 . . . . 5  |-  ( ( Fun  `' `' (inr  |`  dom  S )  /\  Fun  `' S )  ->  Fun  ( `' `' (inr  |`  dom  S
)  o.  `' S
) )
1916, 17, 18sylancr 412 . . . 4  |-  ( ph  ->  Fun  ( `' `' (inr  |`  dom  S )  o.  `' S ) )
20 cnvco 4796 . . . . 5  |-  `' ( S  o.  `' (inr  |`  dom  S ) )  =  ( `' `' (inr  |`  dom  S )  o.  `' S )
2120funeqi 5219 . . . 4  |-  ( Fun  `' ( S  o.  `' (inr  |`  dom  S
) )  <->  Fun  ( `' `' (inr  |`  dom  S
)  o.  `' S
) )
2219, 21sylibr 133 . . 3  |-  ( ph  ->  Fun  `' ( S  o.  `' (inr  |`  dom  S
) ) )
23 df-rn 4622 . . . . . . 7  |-  ran  ( R  o.  `' (inl  |` 
dom  R ) )  =  dom  `' ( R  o.  `' (inl  |`  dom  R ) )
24 rncoss 4881 . . . . . . 7  |-  ran  ( R  o.  `' (inl  |` 
dom  R ) ) 
C_  ran  R
2523, 24eqsstrri 3180 . . . . . 6  |-  dom  `' ( R  o.  `' (inl  |`  dom  R ) )  C_  ran  R
26 df-rn 4622 . . . . . . 7  |-  ran  ( S  o.  `' (inr  |` 
dom  S ) )  =  dom  `' ( S  o.  `' (inr  |`  dom  S ) )
27 rncoss 4881 . . . . . . 7  |-  ran  ( S  o.  `' (inr  |` 
dom  S ) ) 
C_  ran  S
2826, 27eqsstrri 3180 . . . . . 6  |-  dom  `' ( S  o.  `' (inr  |`  dom  S ) )  C_  ran  S
29 ss2in 3355 . . . . . 6  |-  ( ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  C_  ran  R  /\  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) 
C_  ran  S )  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  C_  ( ran  R  i^i  ran  S )
)
3025, 28, 29mp2an 424 . . . . 5  |-  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  C_  ( ran  R  i^i  ran  S
)
31 djuinj.disj . . . . 5  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
3230, 31sseqtrid 3197 . . . 4  |-  ( ph  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  C_  (/) )
33 ss0 3455 . . . 4  |-  ( ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  C_  (/)  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  =  (/) )
3432, 33syl 14 . . 3  |-  ( ph  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  =  (/) )
35 funun 5242 . . 3  |-  ( ( ( Fun  `' ( R  o.  `' (inl  |`  dom  R ) )  /\  Fun  `' ( S  o.  `' (inr  |`  dom  S ) ) )  /\  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  =  (/) )  ->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R ) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) ) )
3611, 22, 34, 35syl21anc 1232 . 2  |-  ( ph  ->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R ) )  u.  `' ( S  o.  `' (inr  |`  dom  S
) ) ) )
37 df-djud 7080 . . . . 5  |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S
) ) )
3837cnveqi 4786 . . . 4  |-  `' ( R ⊔d  S )  =  `' ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
39 cnvun 5016 . . . 4  |-  `' ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S
) ) )  =  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) )
4038, 39eqtri 2191 . . 3  |-  `' ( R ⊔d  S )  =  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) )
4140funeqi 5219 . 2  |-  ( Fun  `' ( R ⊔d  S )  <->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) ) )
4236, 41sylibr 133 1  |-  ( ph  ->  Fun  `' ( R ⊔d  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    u. cun 3119    i^i cin 3120    C_ wss 3121   (/)c0 3414   `'ccnv 4610   dom cdm 4611   ran crn 4612    |` cres 4613    o. ccom 4615   Fun wfun 5192   -1-1->wf1 5195   ⊔ cdju 7014  inlcinl 7022  inrcinr 7023   ⊔d cdjud 7079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-djud 7080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator