Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuinj | Unicode version |
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
djuinj.r | |
djuinj.s | |
djuinj.disj |
Ref | Expression |
---|---|
djuinj | ⊔d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inlresf1 7038 | . . . . . . 7 inl ⊔ | |
2 | f1fun 5406 | . . . . . . 7 inl ⊔ inl | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 inl |
4 | funcnvcnv 5257 | . . . . . 6 inl inl | |
5 | 3, 4 | ax-mp 5 | . . . . 5 inl |
6 | djuinj.r | . . . . 5 | |
7 | funco 5238 | . . . . 5 inl inl | |
8 | 5, 6, 7 | sylancr 412 | . . . 4 inl |
9 | cnvco 4796 | . . . . 5 inl inl | |
10 | 9 | funeqi 5219 | . . . 4 inl inl |
11 | 8, 10 | sylibr 133 | . . 3 inl |
12 | inrresf1 7039 | . . . . . . 7 inr ⊔ | |
13 | f1fun 5406 | . . . . . . 7 inr ⊔ inr | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 inr |
15 | funcnvcnv 5257 | . . . . . 6 inr inr | |
16 | 14, 15 | ax-mp 5 | . . . . 5 inr |
17 | djuinj.s | . . . . 5 | |
18 | funco 5238 | . . . . 5 inr inr | |
19 | 16, 17, 18 | sylancr 412 | . . . 4 inr |
20 | cnvco 4796 | . . . . 5 inr inr | |
21 | 20 | funeqi 5219 | . . . 4 inr inr |
22 | 19, 21 | sylibr 133 | . . 3 inr |
23 | df-rn 4622 | . . . . . . 7 inl inl | |
24 | rncoss 4881 | . . . . . . 7 inl | |
25 | 23, 24 | eqsstrri 3180 | . . . . . 6 inl |
26 | df-rn 4622 | . . . . . . 7 inr inr | |
27 | rncoss 4881 | . . . . . . 7 inr | |
28 | 26, 27 | eqsstrri 3180 | . . . . . 6 inr |
29 | ss2in 3355 | . . . . . 6 inl inr inl inr | |
30 | 25, 28, 29 | mp2an 424 | . . . . 5 inl inr |
31 | djuinj.disj | . . . . 5 | |
32 | 30, 31 | sseqtrid 3197 | . . . 4 inl inr |
33 | ss0 3455 | . . . 4 inl inr inl inr | |
34 | 32, 33 | syl 14 | . . 3 inl inr |
35 | funun 5242 | . . 3 inl inr inl inr inl inr | |
36 | 11, 22, 34, 35 | syl21anc 1232 | . 2 inl inr |
37 | df-djud 7080 | . . . . 5 ⊔d inl inr | |
38 | 37 | cnveqi 4786 | . . . 4 ⊔d inl inr |
39 | cnvun 5016 | . . . 4 inl inr inl inr | |
40 | 38, 39 | eqtri 2191 | . . 3 ⊔d inl inr |
41 | 40 | funeqi 5219 | . 2 ⊔d inl inr |
42 | 36, 41 | sylibr 133 | 1 ⊔d |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cun 3119 cin 3120 wss 3121 c0 3414 ccnv 4610 cdm 4611 crn 4612 cres 4613 ccom 4615 wfun 5192 wf1 5195 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 ⊔d cdjud 7079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 df-djud 7080 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |