| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuinj | Unicode version | ||
| Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuinj.r |
|
| djuinj.s |
|
| djuinj.disj |
|
| Ref | Expression |
|---|---|
| djuinj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inlresf1 7228 |
. . . . . . 7
| |
| 2 | f1fun 5534 |
. . . . . . 7
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . . 6
|
| 4 | funcnvcnv 5380 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | djuinj.r |
. . . . 5
| |
| 7 | funco 5358 |
. . . . 5
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . . 4
|
| 9 | cnvco 4907 |
. . . . 5
| |
| 10 | 9 | funeqi 5339 |
. . . 4
|
| 11 | 8, 10 | sylibr 134 |
. . 3
|
| 12 | inrresf1 7229 |
. . . . . . 7
| |
| 13 | f1fun 5534 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | funcnvcnv 5380 |
. . . . . 6
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
|
| 17 | djuinj.s |
. . . . 5
| |
| 18 | funco 5358 |
. . . . 5
| |
| 19 | 16, 17, 18 | sylancr 414 |
. . . 4
|
| 20 | cnvco 4907 |
. . . . 5
| |
| 21 | 20 | funeqi 5339 |
. . . 4
|
| 22 | 19, 21 | sylibr 134 |
. . 3
|
| 23 | df-rn 4730 |
. . . . . . 7
| |
| 24 | rncoss 4995 |
. . . . . . 7
| |
| 25 | 23, 24 | eqsstrri 3257 |
. . . . . 6
|
| 26 | df-rn 4730 |
. . . . . . 7
| |
| 27 | rncoss 4995 |
. . . . . . 7
| |
| 28 | 26, 27 | eqsstrri 3257 |
. . . . . 6
|
| 29 | ss2in 3432 |
. . . . . 6
| |
| 30 | 25, 28, 29 | mp2an 426 |
. . . . 5
|
| 31 | djuinj.disj |
. . . . 5
| |
| 32 | 30, 31 | sseqtrid 3274 |
. . . 4
|
| 33 | ss0 3532 |
. . . 4
| |
| 34 | 32, 33 | syl 14 |
. . 3
|
| 35 | funun 5362 |
. . 3
| |
| 36 | 11, 22, 34, 35 | syl21anc 1270 |
. 2
|
| 37 | df-djud 7270 |
. . . . 5
| |
| 38 | 37 | cnveqi 4897 |
. . . 4
|
| 39 | cnvun 5134 |
. . . 4
| |
| 40 | 38, 39 | eqtri 2250 |
. . 3
|
| 41 | 40 | funeqi 5339 |
. 2
|
| 42 | 36, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-dju 7205 df-inl 7214 df-inr 7215 df-djud 7270 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |