| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuinj | Unicode version | ||
| Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuinj.r |
|
| djuinj.s |
|
| djuinj.disj |
|
| Ref | Expression |
|---|---|
| djuinj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inlresf1 7189 |
. . . . . . 7
| |
| 2 | f1fun 5506 |
. . . . . . 7
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . . 6
|
| 4 | funcnvcnv 5352 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | djuinj.r |
. . . . 5
| |
| 7 | funco 5330 |
. . . . 5
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . . 4
|
| 9 | cnvco 4881 |
. . . . 5
| |
| 10 | 9 | funeqi 5311 |
. . . 4
|
| 11 | 8, 10 | sylibr 134 |
. . 3
|
| 12 | inrresf1 7190 |
. . . . . . 7
| |
| 13 | f1fun 5506 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | funcnvcnv 5352 |
. . . . . 6
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
|
| 17 | djuinj.s |
. . . . 5
| |
| 18 | funco 5330 |
. . . . 5
| |
| 19 | 16, 17, 18 | sylancr 414 |
. . . 4
|
| 20 | cnvco 4881 |
. . . . 5
| |
| 21 | 20 | funeqi 5311 |
. . . 4
|
| 22 | 19, 21 | sylibr 134 |
. . 3
|
| 23 | df-rn 4704 |
. . . . . . 7
| |
| 24 | rncoss 4968 |
. . . . . . 7
| |
| 25 | 23, 24 | eqsstrri 3234 |
. . . . . 6
|
| 26 | df-rn 4704 |
. . . . . . 7
| |
| 27 | rncoss 4968 |
. . . . . . 7
| |
| 28 | 26, 27 | eqsstrri 3234 |
. . . . . 6
|
| 29 | ss2in 3409 |
. . . . . 6
| |
| 30 | 25, 28, 29 | mp2an 426 |
. . . . 5
|
| 31 | djuinj.disj |
. . . . 5
| |
| 32 | 30, 31 | sseqtrid 3251 |
. . . 4
|
| 33 | ss0 3509 |
. . . 4
| |
| 34 | 32, 33 | syl 14 |
. . 3
|
| 35 | funun 5334 |
. . 3
| |
| 36 | 11, 22, 34, 35 | syl21anc 1249 |
. 2
|
| 37 | df-djud 7231 |
. . . . 5
| |
| 38 | 37 | cnveqi 4871 |
. . . 4
|
| 39 | cnvun 5107 |
. . . 4
| |
| 40 | 38, 39 | eqtri 2228 |
. . 3
|
| 41 | 40 | funeqi 5311 |
. 2
|
| 42 | 36, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 df-djud 7231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |