Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuinj | Unicode version |
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
djuinj.r | |
djuinj.s | |
djuinj.disj |
Ref | Expression |
---|---|
djuinj | ⊔d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inlresf1 7026 | . . . . . . 7 inl ⊔ | |
2 | f1fun 5396 | . . . . . . 7 inl ⊔ inl | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 inl |
4 | funcnvcnv 5247 | . . . . . 6 inl inl | |
5 | 3, 4 | ax-mp 5 | . . . . 5 inl |
6 | djuinj.r | . . . . 5 | |
7 | funco 5228 | . . . . 5 inl inl | |
8 | 5, 6, 7 | sylancr 411 | . . . 4 inl |
9 | cnvco 4789 | . . . . 5 inl inl | |
10 | 9 | funeqi 5209 | . . . 4 inl inl |
11 | 8, 10 | sylibr 133 | . . 3 inl |
12 | inrresf1 7027 | . . . . . . 7 inr ⊔ | |
13 | f1fun 5396 | . . . . . . 7 inr ⊔ inr | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 inr |
15 | funcnvcnv 5247 | . . . . . 6 inr inr | |
16 | 14, 15 | ax-mp 5 | . . . . 5 inr |
17 | djuinj.s | . . . . 5 | |
18 | funco 5228 | . . . . 5 inr inr | |
19 | 16, 17, 18 | sylancr 411 | . . . 4 inr |
20 | cnvco 4789 | . . . . 5 inr inr | |
21 | 20 | funeqi 5209 | . . . 4 inr inr |
22 | 19, 21 | sylibr 133 | . . 3 inr |
23 | df-rn 4615 | . . . . . . 7 inl inl | |
24 | rncoss 4874 | . . . . . . 7 inl | |
25 | 23, 24 | eqsstrri 3175 | . . . . . 6 inl |
26 | df-rn 4615 | . . . . . . 7 inr inr | |
27 | rncoss 4874 | . . . . . . 7 inr | |
28 | 26, 27 | eqsstrri 3175 | . . . . . 6 inr |
29 | ss2in 3350 | . . . . . 6 inl inr inl inr | |
30 | 25, 28, 29 | mp2an 423 | . . . . 5 inl inr |
31 | djuinj.disj | . . . . 5 | |
32 | 30, 31 | sseqtrid 3192 | . . . 4 inl inr |
33 | ss0 3449 | . . . 4 inl inr inl inr | |
34 | 32, 33 | syl 14 | . . 3 inl inr |
35 | funun 5232 | . . 3 inl inr inl inr inl inr | |
36 | 11, 22, 34, 35 | syl21anc 1227 | . 2 inl inr |
37 | df-djud 7068 | . . . . 5 ⊔d inl inr | |
38 | 37 | cnveqi 4779 | . . . 4 ⊔d inl inr |
39 | cnvun 5009 | . . . 4 inl inr inl inr | |
40 | 38, 39 | eqtri 2186 | . . 3 ⊔d inl inr |
41 | 40 | funeqi 5209 | . 2 ⊔d inl inr |
42 | 36, 41 | sylibr 133 | 1 ⊔d |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cun 3114 cin 3115 wss 3116 c0 3409 ccnv 4603 cdm 4604 crn 4605 cres 4606 ccom 4608 wfun 5182 wf1 5185 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 ⊔d cdjud 7067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-djud 7068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |