ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinj Unicode version

Theorem djuinj 7167
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djuinj.r  |-  ( ph  ->  Fun  `' R )
djuinj.s  |-  ( ph  ->  Fun  `' S )
djuinj.disj  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
Assertion
Ref Expression
djuinj  |-  ( ph  ->  Fun  `' ( R ⊔d  S ) )

Proof of Theorem djuinj
StepHypRef Expression
1 inlresf1 7122 . . . . . . 7  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R A )
2 f1fun 5463 . . . . . . 7  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R A )  ->  Fun  (inl  |`  dom  R ) )
31, 2ax-mp 5 . . . . . 6  |-  Fun  (inl  |` 
dom  R )
4 funcnvcnv 5314 . . . . . 6  |-  ( Fun  (inl  |`  dom  R )  ->  Fun  `' `' (inl  |`  dom  R ) )
53, 4ax-mp 5 . . . . 5  |-  Fun  `' `' (inl  |`  dom  R
)
6 djuinj.r . . . . 5  |-  ( ph  ->  Fun  `' R )
7 funco 5295 . . . . 5  |-  ( ( Fun  `' `' (inl  |`  dom  R )  /\  Fun  `' R )  ->  Fun  ( `' `' (inl  |`  dom  R
)  o.  `' R
) )
85, 6, 7sylancr 414 . . . 4  |-  ( ph  ->  Fun  ( `' `' (inl  |`  dom  R )  o.  `' R ) )
9 cnvco 4848 . . . . 5  |-  `' ( R  o.  `' (inl  |`  dom  R ) )  =  ( `' `' (inl  |`  dom  R )  o.  `' R )
109funeqi 5276 . . . 4  |-  ( Fun  `' ( R  o.  `' (inl  |`  dom  R
) )  <->  Fun  ( `' `' (inl  |`  dom  R
)  o.  `' R
) )
118, 10sylibr 134 . . 3  |-  ( ph  ->  Fun  `' ( R  o.  `' (inl  |`  dom  R
) ) )
12 inrresf1 7123 . . . . . . 7  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( A dom  S )
13 f1fun 5463 . . . . . . 7  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( A dom  S )  ->  Fun  (inr  |`  dom  S ) )
1412, 13ax-mp 5 . . . . . 6  |-  Fun  (inr  |` 
dom  S )
15 funcnvcnv 5314 . . . . . 6  |-  ( Fun  (inr  |`  dom  S )  ->  Fun  `' `' (inr  |`  dom  S ) )
1614, 15ax-mp 5 . . . . 5  |-  Fun  `' `' (inr  |`  dom  S
)
17 djuinj.s . . . . 5  |-  ( ph  ->  Fun  `' S )
18 funco 5295 . . . . 5  |-  ( ( Fun  `' `' (inr  |`  dom  S )  /\  Fun  `' S )  ->  Fun  ( `' `' (inr  |`  dom  S
)  o.  `' S
) )
1916, 17, 18sylancr 414 . . . 4  |-  ( ph  ->  Fun  ( `' `' (inr  |`  dom  S )  o.  `' S ) )
20 cnvco 4848 . . . . 5  |-  `' ( S  o.  `' (inr  |`  dom  S ) )  =  ( `' `' (inr  |`  dom  S )  o.  `' S )
2120funeqi 5276 . . . 4  |-  ( Fun  `' ( S  o.  `' (inr  |`  dom  S
) )  <->  Fun  ( `' `' (inr  |`  dom  S
)  o.  `' S
) )
2219, 21sylibr 134 . . 3  |-  ( ph  ->  Fun  `' ( S  o.  `' (inr  |`  dom  S
) ) )
23 df-rn 4671 . . . . . . 7  |-  ran  ( R  o.  `' (inl  |` 
dom  R ) )  =  dom  `' ( R  o.  `' (inl  |`  dom  R ) )
24 rncoss 4933 . . . . . . 7  |-  ran  ( R  o.  `' (inl  |` 
dom  R ) ) 
C_  ran  R
2523, 24eqsstrri 3213 . . . . . 6  |-  dom  `' ( R  o.  `' (inl  |`  dom  R ) )  C_  ran  R
26 df-rn 4671 . . . . . . 7  |-  ran  ( S  o.  `' (inr  |` 
dom  S ) )  =  dom  `' ( S  o.  `' (inr  |`  dom  S ) )
27 rncoss 4933 . . . . . . 7  |-  ran  ( S  o.  `' (inr  |` 
dom  S ) ) 
C_  ran  S
2826, 27eqsstrri 3213 . . . . . 6  |-  dom  `' ( S  o.  `' (inr  |`  dom  S ) )  C_  ran  S
29 ss2in 3388 . . . . . 6  |-  ( ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  C_  ran  R  /\  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) 
C_  ran  S )  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  C_  ( ran  R  i^i  ran  S )
)
3025, 28, 29mp2an 426 . . . . 5  |-  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  C_  ( ran  R  i^i  ran  S
)
31 djuinj.disj . . . . 5  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
3230, 31sseqtrid 3230 . . . 4  |-  ( ph  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  C_  (/) )
33 ss0 3488 . . . 4  |-  ( ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  C_  (/)  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  =  (/) )
3432, 33syl 14 . . 3  |-  ( ph  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  =  (/) )
35 funun 5299 . . 3  |-  ( ( ( Fun  `' ( R  o.  `' (inl  |`  dom  R ) )  /\  Fun  `' ( S  o.  `' (inr  |`  dom  S ) ) )  /\  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  =  (/) )  ->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R ) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) ) )
3611, 22, 34, 35syl21anc 1248 . 2  |-  ( ph  ->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R ) )  u.  `' ( S  o.  `' (inr  |`  dom  S
) ) ) )
37 df-djud 7164 . . . . 5  |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S
) ) )
3837cnveqi 4838 . . . 4  |-  `' ( R ⊔d  S )  =  `' ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
39 cnvun 5072 . . . 4  |-  `' ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S
) ) )  =  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) )
4038, 39eqtri 2214 . . 3  |-  `' ( R ⊔d  S )  =  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) )
4140funeqi 5276 . 2  |-  ( Fun  `' ( R ⊔d  S )  <->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) ) )
4236, 41sylibr 134 1  |-  ( ph  ->  Fun  `' ( R ⊔d  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3152    i^i cin 3153    C_ wss 3154   (/)c0 3447   `'ccnv 4659   dom cdm 4660   ran crn 4661    |` cres 4662    o. ccom 4664   Fun wfun 5249   -1-1->wf1 5252   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107   ⊔d cdjud 7163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-djud 7164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator