ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinj Unicode version

Theorem djuinj 7234
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djuinj.r  |-  ( ph  ->  Fun  `' R )
djuinj.s  |-  ( ph  ->  Fun  `' S )
djuinj.disj  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
Assertion
Ref Expression
djuinj  |-  ( ph  ->  Fun  `' ( R ⊔d  S ) )

Proof of Theorem djuinj
StepHypRef Expression
1 inlresf1 7189 . . . . . . 7  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R A )
2 f1fun 5506 . . . . . . 7  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R A )  ->  Fun  (inl  |`  dom  R ) )
31, 2ax-mp 5 . . . . . 6  |-  Fun  (inl  |` 
dom  R )
4 funcnvcnv 5352 . . . . . 6  |-  ( Fun  (inl  |`  dom  R )  ->  Fun  `' `' (inl  |`  dom  R ) )
53, 4ax-mp 5 . . . . 5  |-  Fun  `' `' (inl  |`  dom  R
)
6 djuinj.r . . . . 5  |-  ( ph  ->  Fun  `' R )
7 funco 5330 . . . . 5  |-  ( ( Fun  `' `' (inl  |`  dom  R )  /\  Fun  `' R )  ->  Fun  ( `' `' (inl  |`  dom  R
)  o.  `' R
) )
85, 6, 7sylancr 414 . . . 4  |-  ( ph  ->  Fun  ( `' `' (inl  |`  dom  R )  o.  `' R ) )
9 cnvco 4881 . . . . 5  |-  `' ( R  o.  `' (inl  |`  dom  R ) )  =  ( `' `' (inl  |`  dom  R )  o.  `' R )
109funeqi 5311 . . . 4  |-  ( Fun  `' ( R  o.  `' (inl  |`  dom  R
) )  <->  Fun  ( `' `' (inl  |`  dom  R
)  o.  `' R
) )
118, 10sylibr 134 . . 3  |-  ( ph  ->  Fun  `' ( R  o.  `' (inl  |`  dom  R
) ) )
12 inrresf1 7190 . . . . . . 7  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( A dom  S )
13 f1fun 5506 . . . . . . 7  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( A dom  S )  ->  Fun  (inr  |`  dom  S ) )
1412, 13ax-mp 5 . . . . . 6  |-  Fun  (inr  |` 
dom  S )
15 funcnvcnv 5352 . . . . . 6  |-  ( Fun  (inr  |`  dom  S )  ->  Fun  `' `' (inr  |`  dom  S ) )
1614, 15ax-mp 5 . . . . 5  |-  Fun  `' `' (inr  |`  dom  S
)
17 djuinj.s . . . . 5  |-  ( ph  ->  Fun  `' S )
18 funco 5330 . . . . 5  |-  ( ( Fun  `' `' (inr  |`  dom  S )  /\  Fun  `' S )  ->  Fun  ( `' `' (inr  |`  dom  S
)  o.  `' S
) )
1916, 17, 18sylancr 414 . . . 4  |-  ( ph  ->  Fun  ( `' `' (inr  |`  dom  S )  o.  `' S ) )
20 cnvco 4881 . . . . 5  |-  `' ( S  o.  `' (inr  |`  dom  S ) )  =  ( `' `' (inr  |`  dom  S )  o.  `' S )
2120funeqi 5311 . . . 4  |-  ( Fun  `' ( S  o.  `' (inr  |`  dom  S
) )  <->  Fun  ( `' `' (inr  |`  dom  S
)  o.  `' S
) )
2219, 21sylibr 134 . . 3  |-  ( ph  ->  Fun  `' ( S  o.  `' (inr  |`  dom  S
) ) )
23 df-rn 4704 . . . . . . 7  |-  ran  ( R  o.  `' (inl  |` 
dom  R ) )  =  dom  `' ( R  o.  `' (inl  |`  dom  R ) )
24 rncoss 4968 . . . . . . 7  |-  ran  ( R  o.  `' (inl  |` 
dom  R ) ) 
C_  ran  R
2523, 24eqsstrri 3234 . . . . . 6  |-  dom  `' ( R  o.  `' (inl  |`  dom  R ) )  C_  ran  R
26 df-rn 4704 . . . . . . 7  |-  ran  ( S  o.  `' (inr  |` 
dom  S ) )  =  dom  `' ( S  o.  `' (inr  |`  dom  S ) )
27 rncoss 4968 . . . . . . 7  |-  ran  ( S  o.  `' (inr  |` 
dom  S ) ) 
C_  ran  S
2826, 27eqsstrri 3234 . . . . . 6  |-  dom  `' ( S  o.  `' (inr  |`  dom  S ) )  C_  ran  S
29 ss2in 3409 . . . . . 6  |-  ( ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  C_  ran  R  /\  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) 
C_  ran  S )  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  C_  ( ran  R  i^i  ran  S )
)
3025, 28, 29mp2an 426 . . . . 5  |-  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  C_  ( ran  R  i^i  ran  S
)
31 djuinj.disj . . . . 5  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
3230, 31sseqtrid 3251 . . . 4  |-  ( ph  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  C_  (/) )
33 ss0 3509 . . . 4  |-  ( ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  C_  (/)  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  =  (/) )
3432, 33syl 14 . . 3  |-  ( ph  ->  ( dom  `' ( R  o.  `' (inl  |`  dom  R ) )  i^i  dom  `' ( S  o.  `' (inr  |` 
dom  S ) ) )  =  (/) )
35 funun 5334 . . 3  |-  ( ( ( Fun  `' ( R  o.  `' (inl  |`  dom  R ) )  /\  Fun  `' ( S  o.  `' (inr  |`  dom  S ) ) )  /\  ( dom  `' ( R  o.  `' (inl  |`  dom  R
) )  i^i  dom  `' ( S  o.  `' (inr  |`  dom  S ) ) )  =  (/) )  ->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R ) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) ) )
3611, 22, 34, 35syl21anc 1249 . 2  |-  ( ph  ->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R ) )  u.  `' ( S  o.  `' (inr  |`  dom  S
) ) ) )
37 df-djud 7231 . . . . 5  |-  ( R ⊔d  S )  =  ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S
) ) )
3837cnveqi 4871 . . . 4  |-  `' ( R ⊔d  S )  =  `' ( ( R  o.  `' (inl  |`  dom  R
) )  u.  ( S  o.  `' (inr  |` 
dom  S ) ) )
39 cnvun 5107 . . . 4  |-  `' ( ( R  o.  `' (inl  |`  dom  R ) )  u.  ( S  o.  `' (inr  |`  dom  S
) ) )  =  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) )
4038, 39eqtri 2228 . . 3  |-  `' ( R ⊔d  S )  =  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) )
4140funeqi 5311 . 2  |-  ( Fun  `' ( R ⊔d  S )  <->  Fun  ( `' ( R  o.  `' (inl  |`  dom  R
) )  u.  `' ( S  o.  `' (inr  |`  dom  S ) ) ) )
4236, 41sylibr 134 1  |-  ( ph  ->  Fun  `' ( R ⊔d  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172    i^i cin 3173    C_ wss 3174   (/)c0 3468   `'ccnv 4692   dom cdm 4693   ran crn 4694    |` cres 4695    o. ccom 4697   Fun wfun 5284   -1-1->wf1 5287   ⊔ cdju 7165  inlcinl 7173  inrcinr 7174   ⊔d cdjud 7230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176  df-djud 7231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator