| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5321 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 |
| This theorem is referenced by: fnrel 5419 funfni 5423 fnco 5431 fnssresb 5435 ffun 5476 f1fun 5534 f1ofun 5574 fnbrfvb 5672 fvelimab 5690 fvun1 5700 elpreima 5754 respreima 5763 fconst3m 5858 fnfvima 5874 fnunirn 5891 f1eqcocnv 5915 fnexALT 6256 tfrlem4 6459 tfrlem5 6460 fndmeng 6963 caseinl 7258 caseinr 7259 cc2lem 7452 shftfn 11335 phimullem 12747 qnnen 13002 prdsex 13302 prdsval 13306 prdsbaslemss 13307 imasaddvallemg 13348 lidlmex 14439 edgstruct 15864 upgredg 15942 |
| Copyright terms: Public domain | W3C validator |