| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5274 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5274 |
| This theorem is referenced by: fnrel 5372 funfni 5376 fnco 5384 fnssresb 5388 ffun 5428 f1fun 5484 f1ofun 5524 fnbrfvb 5619 fvelimab 5635 fvun1 5645 elpreima 5699 respreima 5708 fconst3m 5803 fnfvima 5819 fnunirn 5836 f1eqcocnv 5860 fnexALT 6196 tfrlem4 6399 tfrlem5 6400 fndmeng 6902 caseinl 7193 caseinr 7194 cc2lem 7378 shftfn 11135 phimullem 12547 qnnen 12802 prdsex 13101 prdsval 13105 prdsbaslemss 13106 imasaddvallemg 13147 lidlmex 14237 edgstruct 15656 |
| Copyright terms: Public domain | W3C validator |