| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5293 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5293 |
| This theorem is referenced by: fnrel 5391 funfni 5395 fnco 5403 fnssresb 5407 ffun 5448 f1fun 5506 f1ofun 5546 fnbrfvb 5642 fvelimab 5658 fvun1 5668 elpreima 5722 respreima 5731 fconst3m 5826 fnfvima 5842 fnunirn 5859 f1eqcocnv 5883 fnexALT 6219 tfrlem4 6422 tfrlem5 6423 fndmeng 6926 caseinl 7219 caseinr 7220 cc2lem 7413 shftfn 11250 phimullem 12662 qnnen 12917 prdsex 13216 prdsval 13220 prdsbaslemss 13221 imasaddvallemg 13262 lidlmex 14352 edgstruct 15775 upgredg 15848 |
| Copyright terms: Public domain | W3C validator |