| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5275 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5275 |
| This theorem is referenced by: fnrel 5373 funfni 5377 fnco 5385 fnssresb 5389 ffun 5430 f1fun 5486 f1ofun 5526 fnbrfvb 5621 fvelimab 5637 fvun1 5647 elpreima 5701 respreima 5710 fconst3m 5805 fnfvima 5821 fnunirn 5838 f1eqcocnv 5862 fnexALT 6198 tfrlem4 6401 tfrlem5 6402 fndmeng 6904 caseinl 7195 caseinr 7196 cc2lem 7380 shftfn 11168 phimullem 12580 qnnen 12835 prdsex 13134 prdsval 13138 prdsbaslemss 13139 imasaddvallemg 13180 lidlmex 14270 edgstruct 15691 |
| Copyright terms: Public domain | W3C validator |