![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5258 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5258 |
This theorem is referenced by: fnrel 5353 funfni 5355 fnco 5363 fnssresb 5367 ffun 5407 f1fun 5463 f1ofun 5503 fnbrfvb 5598 fvelimab 5614 fvun1 5624 elpreima 5678 respreima 5687 fconst3m 5778 fnfvima 5794 fnunirn 5811 f1eqcocnv 5835 fnexALT 6165 tfrlem4 6368 tfrlem5 6369 fndmeng 6866 caseinl 7152 caseinr 7153 cc2lem 7328 shftfn 10971 phimullem 12366 qnnen 12591 prdsex 12883 imasaddvallemg 12901 lidlmex 13974 |
Copyright terms: Public domain | W3C validator |