ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fun GIF version

Theorem f1fun 5466
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun (𝐹:𝐴1-1𝐵 → Fun 𝐹)

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 5465 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fnfun 5355 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5252   Fn wfn 5253  1-1wf1 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5261  df-f 5262  df-f1 5263
This theorem is referenced by:  f1cocnv2  5532  f1o2ndf1  6286  f1dmvrnfibi  7010  djuinj  7172
  Copyright terms: Public domain W3C validator