ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbaes Unicode version

Theorem hbaes 1730
Description: Rule that applies hbae 1728 to antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbalequs.1  |-  ( A. z A. x  x  =  y  ->  ph )
Assertion
Ref Expression
hbaes  |-  ( A. x  x  =  y  ->  ph )

Proof of Theorem hbaes
StepHypRef Expression
1 hbae 1728 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
2 hbalequs.1 . 2  |-  ( A. z A. x  x  =  y  ->  ph )
31, 2syl 14 1  |-  ( A. x  x  =  y  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator