ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbaes GIF version

Theorem hbaes 1708
Description: Rule that applies hbae 1706 to antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbalequs.1 (∀𝑧𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
hbaes (∀𝑥 𝑥 = 𝑦𝜑)

Proof of Theorem hbaes
StepHypRef Expression
1 hbae 1706 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 hbalequs.1 . 2 (∀𝑧𝑥 𝑥 = 𝑦𝜑)
31, 2syl 14 1 (∀𝑥 𝑥 = 𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator