ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbaes GIF version

Theorem hbaes 1744
Description: Rule that applies hbae 1742 to antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbalequs.1 (∀𝑧𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
hbaes (∀𝑥 𝑥 = 𝑦𝜑)

Proof of Theorem hbaes
StepHypRef Expression
1 hbae 1742 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 hbalequs.1 . 2 (∀𝑧𝑥 𝑥 = 𝑦𝜑)
31, 2syl 14 1 (∀𝑥 𝑥 = 𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator