ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbal GIF version

Theorem hbal 1457
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbal (∀𝑦𝜑 → ∀𝑥𝑦𝜑)

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3 (𝜑 → ∀𝑥𝜑)
21alimi 1435 . 2 (∀𝑦𝜑 → ∀𝑦𝑥𝜑)
3 ax-7 1428 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
42, 3syl 14 1 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1427  ax-7 1428  ax-gen 1429
This theorem is referenced by:  hba2  1531  aaanh  1566  hbex  1616  pm11.53  1875  euf  2011  hbral  2486
  Copyright terms: Public domain W3C validator