| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbal | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| hbal.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| hbal | ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbal.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | alimi 1469 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| 3 | ax-7 1462 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-7 1462 ax-gen 1463 | 
| This theorem is referenced by: hba2 1565 aaanh 1600 hbex 1650 pm11.53 1910 euf 2050 hbral 2526 | 
| Copyright terms: Public domain | W3C validator |