ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm11.53 Unicode version

Theorem pm11.53 1888
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.53  |-  ( A. x A. y ( ph  ->  ps )  <->  ( E. x ph  ->  A. y ps ) )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem pm11.53
StepHypRef Expression
1 19.21v 1866 . . 3  |-  ( A. y ( ph  ->  ps )  <->  ( ph  ->  A. y ps ) )
21albii 1463 . 2  |-  ( A. x A. y ( ph  ->  ps )  <->  A. x
( ph  ->  A. y ps ) )
3 ax-17 1519 . . . 4  |-  ( ps 
->  A. x ps )
43hbal 1470 . . 3  |-  ( A. y ps  ->  A. x A. y ps )
5419.23h 1491 . 2  |-  ( A. x ( ph  ->  A. y ps )  <->  ( E. x ph  ->  A. y ps ) )
62, 5bitri 183 1  |-  ( A. x A. y ( ph  ->  ps )  <->  ( E. x ph  ->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator